keyword
MENU ▼
Read by QxMD icon Read
search

PARK2

keyword
https://www.readbyqxmd.com/read/28620835/twenty-years-since-the-discovery-of-the-parkin-gene
#1
REVIEW
Nobutaka Hattori, Yoshikuni Mizuno
Nearly 20 years have passed since we identified the causative gene for a familial Parkinson's disease, parkin (now known as PARK2), in 1998. PARK2 is the most common gene responsible for young-onset Parkinson's disease. It codes for the protein Parkin RBR E3 ubiquitin-protein ligase (PARK2), which directly links to the ubiquitin-proteasome as a ubiquitin ligase. PARK2 is involved in mitophagy, which is a type of autophagy, in collaboration with PTEN-induced putative kinase 1 (PINK1). The PINK1 gene (previously known as PARK6) is also a causative gene for young-onset Parkinson's disease...
June 15, 2017: Journal of Neural Transmission
https://www.readbyqxmd.com/read/28603669/combining-multi-dimensional-data-to-identify-key-genes-and-pathways-in-gastric-cancer
#2
Wu Ren, Wei Li, Daguang Wang, Shuofeng Hu, Jian Suo, Xiaomin Ying
Gastric cancer is an aggressive cancer that is often diagnosed late. Early detection and treatment require a better understanding of the molecular pathology of the disease. The present study combined data on gene expression and regulatory levels (microRNA, methylation, copy number) with the aim of identifying key genes and pathways for gastric cancer. Data used in this study was retrieved from The Cancer Genomic Atlas. Differential analyses between gastric cancer and normal tissues were carried out using Limma...
2017: PeerJ
https://www.readbyqxmd.com/read/28602540/deficiencies-in-mitochondrial-dynamics-sensitize-caenorhabditis-elegans-to-arsenite-and-other-mitochondrial-toxicants-by-reducing-mitochondrial-adaptability
#3
Anthony L Luz, Tewodros R Godebo, Latasha L Smith, Tess C Leuthner, Laura L Maurer, Joel N Meyer
Mitochondrial fission, fusion, and mitophagy are interlinked processes that regulate mitochondrial shape, number, and size, as well as metabolic activity and stress response. The fundamental importance of these processes is evident in the fact that mutations in fission (DRP1), fusion (MFN2, OPA1), and mitophagy (PINK1, PARK2) genes can cause human disease (collectively >1/10,000). Interestingly, however, the age of onset and severity of clinical manifestations varies greatly between patients with these diseases (even those harboring identical mutations), suggesting a role for environmental factors in the development and progression of certain mitochondrial diseases...
June 8, 2017: Toxicology
https://www.readbyqxmd.com/read/28577568/pirfenidone-inhibits-myofibroblast-differentiation-and-lung-fibrosis-development-during-insufficient-mitophagy
#4
Yusuke Kurita, Jun Araya, Shunsuke Minagawa, Hiromichi Hara, Akihiro Ichikawa, Nayuta Saito, Tsukasa Kadota, Kazuya Tsubouchi, Nahoko Sato, Masahiro Yoshida, Kenji Kobayashi, Saburo Ito, Yu Fujita, Hirofumi Utsumi, Haruhiko Yanagisawa, Mitsuo Hashimoto, Hiroshi Wakui, Yutaka Yoshii, Takeo Ishikawa, Takanori Numata, Yumi Kaneko, Hisatoshi Asano, Makoto Yamashita, Makoto Odaka, Toshiaki Morikawa, Katsutoshi Nakayama, Kazuyoshi Kuwano
BACKGROUND: Pirfenidone (PFD) is an anti-fibrotic agent used to treat idiopathic pulmonary fibrosis (IPF), but its precise mechanism of action remains elusive. Accumulation of profibrotic myofibroblasts is a crucial process for fibrotic remodeling in IPF. Recent findings show participation of autophagy/mitophagy, part of the lysosomal degradation machinery, in IPF pathogenesis. Mitophagy has been implicated in myofibroblast differentiation through regulating mitochondrial reactive oxygen species (ROS)-mediated platelet-derived growth factor receptor (PDGFR) activation...
June 2, 2017: Respiratory Research
https://www.readbyqxmd.com/read/28566165/peripheral-neuropathy-in-idiopathic-parkinson-s-disease-a-systematic-review
#5
REVIEW
Panagiotis Zis, Richard A Grünewald, Ray Kallol Chaudhuri, Marios Hadjivassiliou
BACKGROUND: Parkinson's disease (PD) has been associated with peripheral neuropathy (PN). PN has been demonstrated in some rare genetic forms of PD (e.g. PARK2 mutations) but has also been linked to levodopa exposure. OBJECTIVE: The aim of this systematic review is to clarify any evidence of peripheral nervous system involvement in idiopathic PD. METHODS: A systematic computer-based literature search was conducted on PubMed database. FINDINGS: The pooled estimate of the prevalence of large fiber PN in PD was 16...
July 15, 2017: Journal of the Neurological Sciences
https://www.readbyqxmd.com/read/28541025/structural-genomic-variations-and-parkinson-s-disease
#6
Sara Bandrés-Ciga, Clara Ruz, Francisco J Barrero, Francisco Escamilla-Sevilla, Javier Pelegrina, Francisco Vives, Raquel Duran
Parkinson's disease (PD) is the second most common neurodegenerative disease, whose prevalence is projected to be between 8.7 and 9.3 million by 2030. Until about 20 years ago, PD was considered to be the textbook example of a "nongenetic" disorder. Nowadays, PD is generally considered a multifactorial disorder that arises from the combination and complex interaction of genes and environmental factors. To date, a total of 7 genes including SNCA, LRRK2, PARK2, DJ-1, PINK 1, VPS35 and ATP13A2 have been seen to cause unequivocally Mendelian PD...
May 25, 2017: Minerva Medica
https://www.readbyqxmd.com/read/28507507/pink1-parkin-dependent-mitochondrial-surveillance-from-pleiotropy-to-parkinson-s-disease
#7
REVIEW
Francois Mouton-Liger, Maxime Jacoupy, Jean-Christophe Corvol, Olga Corti
Parkinson's disease (PD) is one of the most frequent neurodegenerative disease caused by the preferential, progressive degeneration of the dopaminergic (DA) neurons of the substantia nigra (SN) pars compacta. PD is characterized by a multifaceted pathological process involving protein misfolding, mitochondrial dysfunction, neuroinflammation and metabolism deregulation. The molecular mechanisms governing the complex interplay between the different facets of this process are still unknown. PARK2/Parkin and PARK6/PINK1, two genes responsible for familial forms of PD, act as a ubiquitous core signaling pathway, coupling mitochondrial stress to mitochondrial surveillance, by regulating mitochondrial dynamics, the removal of damaged mitochondrial components by mitochondria-derived vesicles, mitophagy, and mitochondrial biogenesis...
2017: Frontiers in Molecular Neuroscience
https://www.readbyqxmd.com/read/28441456/genome-wide-association-study-of-facial-morphology-reveals-novel-associations-with-frem1-and-park2
#8
Myoung Keun Lee, John R Shaffer, Elizabeth J Leslie, Ekaterina Orlova, Jenna C Carlson, Eleanor Feingold, Mary L Marazita, Seth M Weinberg
Several studies have now shown evidence of association between common genetic variants and quantitative facial traits in humans. The reported associations generally involve simple univariate measures and likely represent only a small fraction of the genetic loci influencing facial morphology. In this study, we applied factor analysis to a set of 276 facial linear distances derived from 3D facial surface images of 2187 unrelated individuals of European ancestry. We retained 23 facial factors, which we then tested for genetic associations using a genome-wide panel of 10,677,593 single nucleotide polymorphisms (SNPs)...
2017: PloS One
https://www.readbyqxmd.com/read/28429747/imaging-genetics-approach-to-parkinson-s-disease-and-its-correlation-with-clinical-score
#9
Mansu Kim, Jonghoon Kim, Seung-Hak Lee, Hyunjin Park
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with both underlying genetic factors and neuroimaging findings. Existing neuroimaging studies related to the genome in PD have mostly focused on certain candidate genes. The aim of our study was to construct a linear regression model using both genetic and neuroimaging features to better predict clinical scores compared to conventional approaches. We obtained neuroimaging and DNA genotyping data from a research database. Connectivity analysis was applied to identify neuroimaging features that could differentiate between healthy control (HC) and PD groups...
April 21, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28407791/accelerated-differentiation-of-human-induced-pluripotent-stem-cells-to-blood-brain-barrier-endothelial-cells
#10
Emma K Hollmann, Amanda K Bailey, Archit V Potharazu, M Diana Neely, Aaron B Bowman, Ethan S Lippmann
BACKGROUND: Due to their ability to limitlessly proliferate and specialize into almost any cell type, human induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to generate human brain microvascular endothelial cells (BMECs), which compose the blood-brain barrier (BBB), for research purposes. Unfortunately, the time, expense, and expertise required to differentiate iPSCs to purified BMECs precludes their widespread use. Here, we report the use of a defined medium that accelerates the differentiation of iPSCs to BMECs while achieving comparable performance to BMECs produced by established methods...
April 13, 2017: Fluids and Barriers of the CNS
https://www.readbyqxmd.com/read/28399880/quantitative-proteomic-analysis-of-parkin-substrates-in-drosophila-neurons
#11
Aitor Martinez, Benoit Lectez, Juanma Ramirez, Oliver Popp, James D Sutherland, Sylvie Urbé, Gunnar Dittmar, Michael J Clague, Ugo Mayor
BACKGROUND: Parkin (PARK2) is an E3 ubiquitin ligase that is commonly mutated in Familial Parkinson's Disease (PD). In cell culture models, Parkin is recruited to acutely depolarised mitochondria by PINK1. PINK1 activates Parkin activity leading to ubiquitination of multiple proteins, which in turn promotes clearance of mitochondria by mitophagy. Many substrates have been identified using cell culture models in combination with depolarising drugs or proteasome inhibitors, but not in more physiological settings...
April 11, 2017: Molecular Neurodegeneration
https://www.readbyqxmd.com/read/28395174/loss-of-parkin-reduces-inflammatory-arthritis-by-inhibiting-p53-degradation
#12
Yu Yeon Jung, Dong Ju Son, Hye Lim Lee, Dae Hwan Kim, Min Jong Song, Young Wan Ham, Youngsoo Kim, Sang Bae Han, Mi Hee Park, Jin Tae Hong
Parkin is associated with various inflammatory diseases, including Parkinson's disease (PD) and rheumatoid arthritis (RA). However, the precise role of Parkin in RA is unclear. The present study addressed this issue by comparing the development of RA between non-transgenic (non-Tg) mice and PARK2 knockout (KO) mice. We found that cyclooxygenase-2 and inducible nitric oxide synthase expression and nuclear factor-κB activity were reduced but p53 activation was increased in PARK2 KO as compared to non-Tg mice...
August 2017: Redox Biology
https://www.readbyqxmd.com/read/28379402/slp-2-interacts-with-parkin-in-mitochondria-and-prevents-mitochondrial-dysfunction-in-parkin-deficient-human-ipsc-derived-neurons-and-drosophila
#13
Alessandra Zanon, Sreehari Kalvakuri, Aleksandar Rakovic, Luisa Foco, Marianna Guida, Christine Schwienbacher, Alice Serafin, Franziska Rudolph, Michaela Trilck, Anne Grünewald, Nancy Stanslowsky, Florian Wegner, Valentina Giorgio, Alexandros A Lavdas, Rolf Bodmer, Peter P Pramstaller, Christine Klein, Andrew A Hicks, Irene Pichler, Philip Seibler
Mutations in the Parkin gene (PARK2) have been linked to a recessive form of Parkinson's disease (PD) characterized by the loss of dopaminergic neurons in the substantia nigra. Deficiencies of mitochondrial respiratory chain complex I activity have been observed in the substantia nigra of PD patients, and loss of Parkin results in the reduction of complex I activity shown in various cell and animal models. Using co-immunoprecipitation and proximity ligation assays on endogenous proteins, we demonstrate that Parkin interacts with mitochondrial Stomatin-like protein 2 (SLP-2), which also binds the mitochondrial lipid cardiolipin and functions in the assembly of respiratory chain proteins...
April 3, 2017: Human Molecular Genetics
https://www.readbyqxmd.com/read/28368777/pink1-and-becn1-relocalize-at-mitochondria-associated-membranes-during-mitophagy-and-promote-er-mitochondria-tethering-and-autophagosome-formation
#14
Vania Gelmetti, Priscilla De Rosa, Liliana Torosantucci, Elettra Sara Marini, Alessandra Romagnoli, Martina Di Rienzo, Giuseppe Arena, Domenico Vignone, Gian Maria Fimia, Enza Maria Valente
Mitophagy is a highly specialized process to remove dysfunctional or superfluous mitochondria through the macroautophagy/autophagy pathway, aimed at protecting cells from the damage of disordered mitochondrial metabolism and apoptosis induction. PINK1, a neuroprotective protein mutated in autosomal recessive Parkinson disease, has been implicated in the activation of mitophagy by selectively accumulating on depolarized mitochondria, and promoting PARK2/Parkin translocation to them. While these steps have been characterized in depth, less is known about the process and site of autophagosome formation upon mitophagic stimuli...
April 3, 2017: Autophagy
https://www.readbyqxmd.com/read/28361483/immunocytochemical-monitoring-of-pink1-parkin-mediated-mitophagy-in-cultured-cells
#15
Motoki Fujimaki, Shinji Saiki, Yukiko Sasazawa, Kei-Ichi Ishikawa, Yoko Imamichi, Katsuhiko Sumiyoshi, Nobutaka Hattori
Both PINK1 and parkin are the responsible genes (PARK6 and PARK2, respectively) for familial early-onset Parkinson's disease (PD). Several lines of evidences have suggested that mitochondrial dysfunction would be associated with PD pathogenesis. Lewy body, one of PD pathological hallmarks, contains alpha-synuclein, a familial PD (PARK1/4)-gene product, which is eliminated by macroautophagy, while PINK1 and parkin coordinately mediate mitophagy (hereafter called as PINK1/parkin-mediated mitophagy) reported firstly by Youle's group...
March 31, 2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28335015/the-synaptic-function-of-parkin
#16
Jenny Sassone, GiuliaMaia Serratto, Flavia Valtorta, Vincenzo Silani, Maria Passafaro, Andrea Ciammola
Loss of function mutations in the gene PARK2, which encodes the protein parkin, cause autosomal recessive juvenile parkinsonism, a neurodegenerative disease characterized by degeneration of the dopaminergic neurons localized in the substantia nigra pars compacta. No therapy is effective in slowing disease progression mostly because the pathogenesis of the disease is yet to be understood. From accruing evidence suggesting that the protein parkin directly regulates synapses it can be hypothesized that PARK2 gene mutations lead to early synaptic damage that results in dopaminergic neuron loss over time...
February 23, 2017: Brain: a Journal of Neurology
https://www.readbyqxmd.com/read/28306514/park2-depletion-connects-energy-and-oxidative-stress-to-pi3k-akt-activation-via-pten-s-nitrosylation
#17
Amit Gupta, Sara Anjomani-Virmouni, Nikos Koundouros, Maria Dimitriadi, Rayman Choo-Wing, Adamo Valle, Yuxiang Zheng, Yu-Hsin Chiu, Sameer Agnihotri, Gelareh Zadeh, John M Asara, Dimitrios Anastasiou, Mark J Arends, Lewis C Cantley, George Poulogiannis
PARK2 is a gene implicated in disease states with opposing responses in cell fate determination, yet its contribution in pro-survival signaling is largely unknown. Here we show that PARK2 is altered in over a third of all human cancers, and its depletion results in enhanced phosphatidylinositol 3-kinase/Akt (PI3K/Akt) activation and increased vulnerability to PI3K/Akt/mTOR inhibitors. PARK2 depletion contributes to AMPK-mediated activation of endothelial nitric oxide synthase (eNOS), enhanced levels of reactive oxygen species, and a concomitant increase in oxidized nitric oxide levels, thereby promoting the inhibition of PTEN by S-nitrosylation and ubiquitination...
March 16, 2017: Molecular Cell
https://www.readbyqxmd.com/read/28306509/the-pten-parkin-axis-at-the-nexus-of-cancer-and-neurodegeneration
#18
Nathan T Ihle, Robert T Abraham
The PARK2 gene encodes an ubiquitin E3 ligase that is involved in mitochondrial homeostasis and linked to Parkinson's disease. In this issue, Gupta et al. (2017) demonstrate that PARK2 expression is frequently reduced in human cancers and that this alteration leads to dysregulated PI3K signaling.
March 16, 2017: Molecular Cell
https://www.readbyqxmd.com/read/28231468/parkinson-sac-domain-mutation-in-synaptojanin-1-impairs-clathrin-uncoating-at-synapses-and-triggers-dystrophic-changes-in-dopaminergic-axons
#19
Mian Cao, Yumei Wu, Ghazaleh Ashrafi, Amber J McCartney, Heather Wheeler, Eric A Bushong, Daniela Boassa, Mark H Ellisman, Timothy A Ryan, Pietro De Camilli
Synaptojanin 1 (SJ1) is a major presynaptic phosphatase that couples synaptic vesicle endocytosis to the dephosphorylation of PI(4,5)P2, a reaction needed for the shedding of endocytic factors from their membranes. While the role of SJ1's 5-phosphatase module in this process is well recognized, the contribution of its Sac phosphatase domain, whose preferred substrate is PI4P, remains unclear. Recently a homozygous mutation in its Sac domain was identified in early-onset parkinsonism patients. We show that mice carrying this mutation developed neurological manifestations similar to those of human patients...
February 22, 2017: Neuron
https://www.readbyqxmd.com/read/28205494/language-deficits-as-a-preclinical-window-into-parkinson-s-disease-evidence-from-asymptomatic-parkin-and-dardarin-mutation-carriers
#20
Adolfo M García, Lucas Sedeño, Natalia Trujillo, Yamile Bocanegra, Diana Gomez, David Pineda, Andrés Villegas, Edinson Muñoz, William Arias, Agustín Ibáñez
OBJECTIVES: The worldwide spread of Parkinson's disease (PD) calls for sensitive and specific measures enabling its early (or, ideally, preclinical) detection. Here, we use language measures revealing deficits in PD to explore whether similar disturbances are present in asymptomatic individuals at risk for the disease. METHODS: We administered executive, semantic, verb-production, and syntactic tasks to sporadic PD patients, genetic PD patients with PARK2 (parkin) or LRRK2 (dardarin) mutation, asymptomatic first-degree relatives of the latter with similar mutations, and socio-demographically matched controls...
February 2017: Journal of the International Neuropsychological Society: JINS
keyword
keyword
65410
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"