keyword
MENU ▼
Read by QxMD icon Read
search

WNK

keyword
https://www.readbyqxmd.com/read/28178566/wnk-kinase-signaling-in-ion-homeostasis-and-human-disease
#1
REVIEW
Masoud Shekarabi, Jinwei Zhang, Arjun R Khanna, David H Ellison, Eric Delpire, Kristopher T Kahle
WNK kinases, along with their upstream regulators (CUL3/KLHL3) and downstream targets (the SPAK/OSR1 kinases and the cation-Cl(-) cotransporters [CCCs]), comprise a signaling cascade essential for ion homeostasis in the kidney and nervous system. Recent work has furthered our understanding of the WNKs in epithelial transport, cell volume homeostasis, and GABA signaling, and uncovered novel roles for this pathway in immune cell function and cell proliferation.
February 7, 2017: Cell Metabolism
https://www.readbyqxmd.com/read/28052988/potassium-sensing-by-renal-distal-tubules-requires-kir4-1
#2
Catherina A Cuevas, Xiao-Tong Su, Ming-Xiao Wang, Andrew S Terker, Dao-Hong Lin, James A McCormick, Chao-Ling Yang, David H Ellison, Wen-Hui Wang
The mammalian distal convoluted tubule (DCT) makes an important contribution to potassium homeostasis by modulating NaCl transport. The thiazide-sensitive Na(+)/Cl(-) cotransporter (NCC) is activated by low potassium intake and by hypokalemia. Coupled with suppression of aldosterone secretion, activation of NCC helps to retain potassium by increasing electroneutral NaCl reabsorption, therefore reducing Na(+)/K(+) exchange. Yet the mechanisms by which DCT cells sense plasma potassium concentration and transmit the information to the apical membrane are not clear...
January 4, 2017: Journal of the American Society of Nephrology: JASN
https://www.readbyqxmd.com/read/28052936/klhl3-knockout-mice-reveal-the-physiological-role-of-klhl3-and-the-pathophysiology-of-phaii-caused-by-mutant-klhl3
#3
Emi Sasaki, Koichiro Susa, Takayasu Mori, Kiyoshi Isobe, Yuya Araki, Yuichi Inoue, Yuki Yoshizaki, Fumiaki Ando, Yutaro Mori, Shintaro Mandai, Moko Zeniya, Daiei Takahashi, Naohiro Nomura, Tatemitsu Rai, Shinichi Uchida, Eisei Sohara
Mutations in the with-no-lysine kinase 1 (WNK1), WNK4, kelch-like 3 (KLHL3), and cullin3 (CUL3) genes are known to cause the hereditary disease pseudohypoaldosteronism type II (PHAII). It was recently demonstrated that this results from the defective degradation of WNK1 and WNK4 by the KLHL3/CUL3 ubiquitin ligase complex. However, the other physiological in vivo roles of KLHL3 remain unclear. Therefore, here we generated KLHL3(-/-) mice that expressed β-galactosidase (β-gal) under the endogenous KLHL3 promoter...
January 4, 2017: Molecular and Cellular Biology
https://www.readbyqxmd.com/read/28003191/calcineurin-inhibitor-cyclosporine-a-activates-renal-na-k-cl-cotransporters-via-local-and-systemic-mechanisms
#4
Katharina Ilse Blankenstein, Aljona Borschewski, Robert Labes, Alexander Paliege, Christin Boldt, James A McCormick, David H Ellison, Michael Bader, Sebastian Bachmann, Kerim Mutig
Calcineurin dephosphorylates NFAT transcription factors, thereby facilitating T-cell mediated immune responses. Calcineurin inhibitors are instrumental for immunosuppression after organ transplantation, but may cause side effects including hypertension and electrolyte disorders. Kidneys were recently shown to display activation of the furosemide-sensitive Na-K-2Cl cotransporter (NKCC2) of the thick ascending limb and the thiazide-sensitive Na-Cl cotransporter (NCC) of the distal convoluted tubule upon calcineurin inhibition using cyclosporin A (CsA)...
December 21, 2016: American Journal of Physiology. Renal Physiology
https://www.readbyqxmd.com/read/27983989/potassium-depletion-stimulates-na-cl-cotransporter-via-phosphorylation-and-inactivation-of-the-ubiquitin-ligase-kelch-like-3
#5
Kenichi Ishizawa, Ning Xu, Johannes Loffing, Richard P Lifton, Toshiro Fujita, Shunya Uchida, Shigeru Shibata
Kelch-like 3 (KLHL3) is a component of an E3 ubiquitin ligase complex that regulates blood pressure by targeting With-No-Lysine (WNK) kinases for degradation. Mutations in KLHL3 cause constitutively increased renal salt reabsorption and impaired K(+) secretion, resulting in hypertension and hyperkalemia. Although clinical studies have shown that dietary K(+) intake affects blood pressure, the mechanisms have been obscure. In this study, we demonstrate that the KLHL3 ubiquitin ligase complex is involved in the low-K(+)-mediated activation of Na-Cl cotransporter (NCC) in the kidney...
October 28, 2016: Biochemical and Biophysical Research Communications
https://www.readbyqxmd.com/read/27942049/potassium-depletion-stimulates-na-cl-cotransporter-via-phosphorylation-and-inactivation-of-the-ubiquitin-ligase-kelch-like-3
#6
Kenichi Ishizawa, Ning Xu, Johannes Loffing, Richard P Lifton, Toshiro Fujita, Shunya Uchida, Shigeru Shibata
Kelch-like 3 (KLHL3) is a component of an E3 ubiquitin ligase complex that regulates blood pressure by targeting With-No-Lysine (WNK) kinases for degradation. Mutations in KLHL3 cause constitutively increased renal salt reabsorption and impaired K(+) secretion, resulting in hypertension and hyperkalemia. Although clinical studies have shown that dietary K(+) intake affects blood pressure, the mechanisms have been obscure. In this study, we demonstrate that the KLHL3 ubiquitin ligase complex is involved in the low-K(+)-mediated activation of Na-Cl cotransporter (NCC) in the kidney...
2016: Biochemical and Biophysical Research Communications
https://www.readbyqxmd.com/read/27911840/multistep-regulation-of-autophagy-by-wnk1
#7
Sachith Gallolu Kankanamalage, A-Young Lee, Chonlarat Wichaidit, Andres Lorente-Rodriguez, Akansha M Shah, Steve Stippec, Angelique W Whitehurst, Melanie H Cobb
The with-no-lysine (K) (WNK) kinases are an atypical family of protein kinases that regulate ion transport across cell membranes. Mutations that result in their overexpression cause hypertension-related disorders in humans. Of the four mammalian WNKs, only WNK1 is expressed throughout the body. We report that WNK1 inhibits autophagy, an intracellular degradation pathway implicated in several human diseases. Using small-interfering RNA-mediated WNK1 knockdown, we show autophagosome formation and autophagic flux are accelerated...
December 13, 2016: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/27815594/wnk-signalling-pathways-in-blood-pressure-regulation
#8
REVIEW
Meena Murthy, Thimo Kurz, Kevin M O'Shaughnessy
Hypertension (high blood pressure) is a major public health problem affecting more than a billion people worldwide with complications, including stroke, heart failure and kidney failure. The regulation of blood pressure is multifactorial reflecting genetic susceptibility, in utero environment and external factors such as obesity and salt intake. In keeping with Arthur Guyton's hypothesis, the kidney plays a key role in blood pressure control and data from clinical studies; physiology and genetics have shown that hypertension is driven a failure of the kidney to excrete excess salt at normal levels of blood pressure...
November 4, 2016: Cellular and Molecular Life Sciences: CMLS
https://www.readbyqxmd.com/read/27811182/leveraging-unique-structural-characteristics-of-wnk-kinases-to-achieve-therapeutic-inhibition
#9
REVIEW
Jinwei Zhang, Xianming Deng, Kristopher T Kahle
The with-no-lysine (K) WNK kinases are master regulators of the Na(+)-(K(+))-Cl(-) cotransporters, including the renal-specific NCC and NKCC2 cotransporters. The discovery of WNK463, an orally bioavailable pan-WNK kinase inhibitor that exploits unique structural properties of the WNK catalytic domain to achieve high affinity and kinase selectivity, illustrates a strategy of leveraging distinct kinase features to develop specific inhibitors and validates the genetic predictions of the in vivo pharmacology of WNK inhibition...
October 18, 2016: Science Signaling
https://www.readbyqxmd.com/read/27810492/molecular-initiating-events-of-the-intersex-phenotype-low-dose-exposure-to-17%C3%AE-ethinylestradiol-rapidly-regulates-molecular-networks-associated-with-gonad-differentiation-in-the-adult-fathead-minnow-testis
#10
April Feswick, Jennifer R Loughery, Meghan A Isaacs, Kelly R Munkittrick, Christopher J Martyniuk
Intersex, or the presence of oocytes in the testes, has been documented in fish following exposure to wastewater effluent and estrogenic compounds. However, the molecular networks underlying the intersex condition are not completely known. To address this, we exposed male fathead minnows to a low, environmentally-relevant concentration of 17alpha-ethinylestradiol (EE2) (15ng/L) and measured the transcriptome response in the testis after 96h to identify early molecular initiating events that may proceed the intersex condition...
December 2016: Aquatic Toxicology
https://www.readbyqxmd.com/read/27798271/wnk-cab39-nkcc1-signaling-increases-the-susceptibility-to-ischemic-brain-damage-in-hypertensive-rats
#11
Mohammad Iqbal H Bhuiyan, Shanshan Song, Hui Yuan, Gulnaz Begum, Julia Kofler, Kristopher T Kahle, Sung-Sen Yang, Shih-Hua Lin, Seth L Alper, Arohan R Subramanya, Dandan Sun
With-no-lysine kinase (WNK) and Na(+)-K(+)-2Cl(-) cotransporter 1 (NKCC1) are involved in the pathogenesis of hypertension. In this study, we investigated the WNK-NKCC1 signaling pathway in spontaneously hypertensive rats (SHR) and their associated susceptibility to stroke injury. Basal NKCC1 protein levels were higher in SHR than in normotensive Wistar Kyoto (WKY) rat brains. After inducing ischemic stroke, adult male WKY and SHR received either saline or NKCC1 inhibitor bumetanide (10 mg/kg/day, i.p.) starting at 3-h post-reperfusion...
October 26, 2016: Journal of Cerebral Blood Flow and Metabolism
https://www.readbyqxmd.com/read/27765018/arthropathy-related-pain-in-a-patient-with-congenital-impairment-of-pain-sensation-due-to-hereditary-sensory-and-autonomic-neuropathy-type-ii-with-a-rare-mutation-in-the-wnk1-hsn2-gene-a-case-report
#12
Keiko Yamada, Junhui Yuan, Tomoo Mano, Hiroshi Takashima, Masahiko Shibata
BACKGROUND: Hereditary sensory and autonomic neuropathy (HSAN) type II with WNK1/HSN2 gene mutation is a rare disease characterized by early-onset demyelination sensory loss and skin ulceration. To the best of our knowledge, no cases of an autonomic disorder have been reported clearly in a patient with WNK/HSN2 gene mutation and only one case of a Japanese patient with the WNK/HSN2 gene mutation of HSAN type II was previously reported. CASE PRESENTATION: Here we describe a 54-year-old woman who had an early childhood onset of insensitivity to pain; superficial, vibration, and proprioception sensation disturbances; and several symptoms of autonomic failure (e...
October 21, 2016: BMC Neurology
https://www.readbyqxmd.com/read/27712055/discovery-and-characterization-of-allosteric-wnk-kinase-inhibitors
#13
Ken Yamada, Ji-Hu Zhang, Xiaoling Xie, Juergen Reinhardt, Amy Qiongshu Xie, Daniel LaSala, Darcy Kohls, David Yowe, Debra Burdick, Hajime Yoshisue, Hiromichi Wakai, Isabel Schmidt, Jason Gunawan, Kayo Yasoshima, Q Kimberley Yue, Mitsunori Kato, Muneto Mogi, Neeraja Idamakanti, Natasha Kreder, Peter Drueckes, Pramod Pandey, Toshio Kawanami, Waanjeng Huang, Yukiko I Yagi, Zhan Deng, Hyi-Man Park
Protein kinases are known for their highly conserved adenosine triphosphate (ATP)-binding site, rendering the discovery of selective inhibitors a major challenge. In theory, allosteric inhibitors can achieve high selectivity by targeting less conserved regions of the kinases, often with an added benefit of retaining efficacy under high physiological ATP concentration. Although often overlooked in favor of ATP-site directed approaches, performing a screen at high ATP concentration or stringent hit triaging with high ATP concentration offers conceptually simple methods of identifying inhibitors that bind outside the ATP pocket...
December 16, 2016: ACS Chemical Biology
https://www.readbyqxmd.com/read/27595330/small-molecule-wnk-inhibition-regulates-cardiovascular-and-renal-function
#14
Ken Yamada, Hyi-Man Park, Dean F Rigel, Keith DiPetrillo, Erin J Whalen, Anthony Anisowicz, Michael Beil, James Berstler, Cara Emily Brocklehurst, Debra A Burdick, Shari L Caplan, Michael P Capparelli, Guanjing Chen, Wei Chen, Bethany Dale, Lin Deng, Fumin Fu, Norio Hamamatsu, Kouki Harasaki, Tracey Herr, Peter Hoffmann, Qi-Ying Hu, Waan-Jeng Huang, Neeraja Idamakanti, Hidetomo Imase, Yuki Iwaki, Monish Jain, Jey Jeyaseelan, Mitsunori Kato, Virendar K Kaushik, Darcy Kohls, Vidya Kunjathoor, Daniel LaSala, Jongchan Lee, Jing Liu, Yang Luo, Fupeng Ma, Ruowei Mo, Sarah Mowbray, Muneto Mogi, Flavio Ossola, Pramod Pandey, Sejal J Patel, Swetha Raghavan, Bahaa Salem, Yuka H Shanado, Gary M Trakshel, Gordon Turner, Hiromichi Wakai, Chunhua Wang, Stephen Weldon, Jennifer B Wielicki, Xiaoling Xie, Lingfei Xu, Yukiko I Yagi, Kayo Yasoshima, Jianning Yin, David Yowe, Ji-Hu Zhang, Gang Zheng, Lauren Monovich
The With-No-Lysine (K) (WNK) kinases play a critical role in blood pressure regulation and body fluid and electrolyte homeostasis. Herein, we introduce the first orally bioavailable pan-WNK-kinase inhibitor, WNK463, that exploits unique structural features of the WNK kinases for both affinity and kinase selectivity. In rodent models of hypertension, WNK463 affects blood pressure and body fluid and electro-lyte homeostasis, consistent with WNK-kinase-associated physiology and pathophysiology.
November 2016: Nature Chemical Biology
https://www.readbyqxmd.com/read/27511463/negative-news-cl-and-hco3-in-the-vascular-wall
#15
REVIEW
Ebbe Boedtkjer, Vladimir V Matchkov, Donna M B Boedtkjer, Christian Aalkjaer
Cl(-) and HCO3 (-) are the most prevalent membrane-permeable anions in the intra- and extracellular spaces of the vascular wall. Outwardly directed electrochemical gradients for Cl(-) and HCO3 (-) permit anion channel opening to depolarize vascular smooth muscle and endothelial cells. Transporters and channels for Cl(-) and HCO3 (-) also modify vascular contractility and structure independently of membrane potential. Transport of HCO3 (-) regulates intracellular pH and thereby modifies the activity of enzymes, ion channels, and receptors...
September 2016: Physiology
https://www.readbyqxmd.com/read/27485015/peripheral-motor-neuropathy-is-associated-with-defective-kinase-regulation-of-the-kcc3-cotransporter
#16
Kristopher T Kahle, Bianca Flores, Diana Bharucha-Goebel, Jinwei Zhang, Sandra Donkervoort, Madhuri Hegde, Gulnaz Hussain, Daniel Duran, Bo Liang, Dandan Sun, Carsten G Bönnemann, Eric Delpire
Using exome sequencing, we identified a de novo mutation (c.2971A>G; T991A) in SLC12A6, the gene encoding the K(+)-Cl(-) cotransporter KCC3, in a patient with an early-onset, progressive, and severe peripheral neuropathy primarily affecting motor neurons. Normally, the WNK kinase-dependent phosphorylation of T(991) tonically inhibits KCC3; however, cell swelling triggers Thr(991) dephosphorylation to activate the transporter and restore cell volume. KCC3 T991A mutation in patient cells abolished Thr(991) phosphorylation, resulted in constitutive KCC3 activity, and compromised cell volume homeostasis...
2016: Science Signaling
https://www.readbyqxmd.com/read/27467688/wnk3-kinase-enhances-the-sodium-chloride-cotransporter-expression-via-an-erk-1-2-signaling-pathway
#17
Dexuan Wang, Yiqian Zhang, Jinhua Han, Shufang Pan, Ning Xu, Xiuyan Feng, Zhizhi Zhuang, Courtney Caroti, Jieqiu Zhuang, Robert S Hoover, Dingying Gu, Qiyi Zeng, Hui Cai
BACKGROUND: WNK kinase is a serine/threonine kinase that plays an important role in normal blood pressure homeostasis. WNK3 was previously found to enhance the activity of sodium chloride cotransporter (NCC) in Xenopus oocyte. However, the mechanism through which it works remains unclear. METHODS: Using overexpression and siRNA knock-down techniques, the effects of WNK3 on NCC in both Cos-7 and mouse distal convoluted cells were analyzed by Western blot. RESULTS: We found that WNK3 significantly increased NCC protein expression in a dose-dependent manner...
2016: Nephron
https://www.readbyqxmd.com/read/27457700/extracellular-k-rapidly-controls-nacl-cotransporter-phosphorylation-in-the-native-distal-convoluted-tubule-by-cl-dependent-and-independent-mechanisms
#18
David Penton, Jan Czogalla, Agnieszka Wengi, Nina Himmerkus, Dominique Loffing-Cueni, Monique Carrel, Renuga Devi Rajaram, Olivier Staub, Markus Bleich, Frank Schweda, Johannes Loffing
KEY POINTS: High dietary potassium (K(+) ) intake dephosphorylates and inactivates the NaCl cotransporter (NCC) in the renal distal convoluted tubule (DCT). Using several ex vivo models, we show that physiological changes in extracellular K(+) , similar to those occurring after a K(+) rich diet, are sufficient to promote a very rapid dephosphorylation of NCC in native DCT cells. Although the increase of NCC phosphorylation upon decreased extracellular K(+) appears to depend on cellular Cl(-) fluxes, the rapid NCC dephosphorylation in response to increased extracellular K(+) is not Cl(-) -dependent...
November 1, 2016: Journal of Physiology
https://www.readbyqxmd.com/read/27397870/massive-excretion-of-calcium-oxalate-from-late-prepupal-salivary-glands-of-drosophila-melanogaster-demonstrates-active-nephridial-like-anion-transport
#19
Robert Farkaš, Ludmila Pečeňová, Lucia Mentelová, Milan Beňo, Denisa Beňová-Liszeková, Silvia Mahmoodová, Václav Tejnecký, Otakar Raška, Pavel Juda, Silvie Svidenská, Matúš Hornáček, Bruce A Chase, Ivan Raška
The Drosophila salivary glands (SGs) were well known for the puffing patterns of their polytene chromosomes and so became a tissue of choice to study sequential gene activation by the steroid hormone ecdysone. One well-documented function of these glands is to produce a secretory glue, which is released during pupariation to fix the freshly formed puparia to the substrate. Over the past two decades SGs have been used to address specific aspects of developmentally-regulated programmed cell death (PCD) as it was thought that they are doomed for histolysis and after pupariation are just awaiting their fate...
August 2016: Development, Growth & Differentiation
https://www.readbyqxmd.com/read/27381844/in-primary-aldosteronism-mineralocorticoids-influence-exosomal-sodium-chloride-cotransporter-abundance
#20
Martin J Wolley, Aihua Wu, Shengxin Xu, Richard D Gordon, Robert A Fenton, Michael Stowasser
Distal tubular sodium retention is a potent driver of hypertension, and the thiazide-sensitive sodium-chloride cotransporter (NCC) has a key role in this process. In humans, factors regulating NCC are unclear, but in animal models, aldosterone is a potent regulator, possibly via effects on plasma potassium. We studied the effects of the mineralocorticoid fludrocortisone on the abundance of NCC and its phosphorylated form (pNCC) as well as WNK lysine deficient protein kinase 4 (WNK4) and STE20/SPS1-related, proline alanine-rich kinase (SPAK) in human urinary exosomes...
January 2017: Journal of the American Society of Nephrology: JASN
keyword
keyword
64602
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"