Read by QxMD icon Read


Peter J Hamilton, Carissa J Lim, Eric J Nestler, Elizabeth A Heller
Studies of the mammalian nervous system have revealed widespread epigenetic regulation underlying gene expression intrinsic to basic neurobiological function as well as neurological disease. Over the past decade, a critical role has emerged for the neural regulation of chromatin-modifying enzymes during both development and adulthood, and in response to external stimuli. These biochemical data are complemented by numerous next generation sequencing (NGS) studies that quantify the extent of chromatin and DNA modifications in neurons...
2018: Methods in Molecular Biology
Eirik Søvik, Pauline Berthier, William P Klare, Paul Helliwell, Edwina L S Buckle, Jenny A Plath, Andrew B Barron, Ryszard Maleszka
Drug addiction is a chronic relapsing behavioral disorder. The high relapse rate has often been attributed to the perseverance of drug-associated memories due to high incentive salience of stimuli learnt under the influence of drugs. Drug addiction has also been interpreted as a memory disorder since drug associated memories are unusually enduring and some drugs, such as cocaine, interfere with neuroepigenetic machinery known to be involved in memory processing. Here we used the honey bee (an established invertebrate model for epigenomics and behavioral studies) to examine whether or not cocaine affects memory processing independently of its effect on incentive salience...
2018: Frontiers in Physiology
Deena M Walker, Eric J Nestler
Drug addiction involves long-term behavioral abnormalities that arise in response to repeated exposure to drugs of abuse in vulnerable individuals. It is a multifactorial syndrome involving a complex interplay between genes and the environment. Evidence suggests that the underlying mechanisms regulating these persistent behavioral abnormalities involve changes in gene expression throughout the brain's reward circuitry, in particular, in the mesolimbic dopamine system. In the past decade, investigations have begun to reveal potential genes involved in the risk for addiction through genomewide association studies...
2018: Handbook of Clinical Neurology
Laura J Leighton, Qiongyi Zhao, Xiang Li, Chuanyang Dai, Paul R Marshall, Sha Liu, Yi Wang, Esmi L Zajaczkowski, Nitin Khandelwal, Arvind Kumar, Timothy W Bredy, Wei Wei
Epigenetic regulation of activity-induced gene expression involves multiple levels of molecular interaction, including histone and DNA modifications, as well as mechanisms of DNA repair. Here we demonstrate that the genome-wide deposition of inhibitor of growth family member 1 (ING1), which is a central epigenetic regulatory protein, is dynamically regulated in response to activity in primary cortical neurons. ING1 knockdown leads to decreased expression of genes related to synaptic plasticity, including the regulatory subunit of calcineurin, Ppp3r1...
January 15, 2018: Neuroscience
Michael A Christopher, Stephanie M Kyle, David J Katz
Epigenetics allows for the inheritance of information in cellular lineages during differentiation, independent of changes to the underlying genetic sequence. This raises the question of whether epigenetic mechanisms also function in post-mitotic neurons. During the long life of the neuron, fluctuations in gene expression allow the cell to pass through stages of differentiation, modulate synaptic activity in response to environmental cues, and fortify the cell through age-related neuroprotective pathways. Emerging evidence suggests that epigenetic mechanisms such as DNA methylation and histone modification permit these dynamic changes in gene expression throughout the life of a neuron...
October 16, 2017: Epigenetics & Chromatin
Margaret M McCarthy, Bridget M Nugent, Kathryn M Lenz
The study of sex differences in the brain is a topic of neuroscientific study that has broad reaching implications for culture, society and biomedical science. Recent research in rodent models has led to dramatic shifts in our views of the mechanisms underlying the sexual differentiation of the brain. These include the surprising discoveries of a role for immune cells and inflammatory mediators in brain masculinization and a role for epigenetic suppression in brain feminization. How and to what degree these findings will translate to human brain development will be questions of central importance in future research in this field...
August 2017: Nature Reviews. Neuroscience
Qiwen Hu, Eun Ji Kim, Jian Feng, Gregory R Grant, Elizabeth A Heller
A compelling body of literature, based on next generation chromatin immunoprecipitation and RNA sequencing of reward brain regions indicates that the regulation of the epigenetic landscape likely underlies chronic drug abuse and addiction. It is now critical to develop highly innovative computational strategies to reveal the relevant regulatory transcriptional mechanisms that may underlie neuropsychiatric disease. We have analyzed chromatin regulation of alternative splicing, which is implicated in cocaine exposure in mice...
June 2017: PLoS Computational Biology
Andrew A Bartlett, Rumani Singh, Richard G Hunter
Anxiety disorders are highly prevalent psychiatric disorders often comorbid with depression and substance abuse. Twin studies have shown that anxiety disorders are moderately heritable. Yet, genome-wide association studies (GWASs) have failed to identify gene(s) significantly associated with diagnosis suggesting a strong role for environmental factors and the epigenome. A number of anxiety disorder subtypes are considered "stress related." A large focus of research has been on the epigenetic and anxiety-like behavioral consequences of stress...
2017: Advances in Experimental Medicine and Biology
Mohd Iqbal Bhat, Rajeev Kapila
The mammalian gastrointestinal tract harbors trillions of commensal microorganisms, collectively known as the microbiota. The microbiota is a critical source of environmental stimuli and, thus, has a tremendous impact on the health of the host. The microbes within the microbiota regulate homeostasis within the gut, and any alteration in their composition can lead to disorders that include inflammatory bowel disease, allergy, autoimmune disease, diabetes, mental disorders, and cancer. Hence, restoration of the gut flora following changes or imbalance is imperative for the host...
May 1, 2017: Nutrition Reviews
Munjal M Acharya, Al Anoud D Baddour, Takumi Kawashita, Barrett D Allen, Amber R Syage, Thuan H Nguyen, Nicole Yoon, Erich Giedzinski, Liping Yu, Vipan K Parihar, Janet E Baulch
Among the dangers to astronauts engaging in deep space missions such as a Mars expedition is exposure to radiations that put them at risk for severe cognitive dysfunction. These radiation-induced cognitive impairments are accompanied by functional and structural changes including oxidative stress, neuroinflammation, and degradation of neuronal architecture. The molecular mechanisms that dictate CNS function are multifaceted and it is unclear how irradiation induces persistent alterations in the brain. Among those determinants of cognitive function are neuroepigenetic mechanisms that translate radiation responses into altered gene expression and cellular phenotype...
February 21, 2017: Scientific Reports
Laetitia Francelle, Caroline Lotz, Tiago Outeiro, Emmanuel Brouillet, Karine Merienne
Unbalanced epigenetic regulation is thought to contribute to the progression of several neurodegenerative diseases, including Huntington's disease (HD), a genetic disorder considered as a paradigm of epigenetic dysregulation. In this review, we attempt to address open questions regarding the role of epigenetic changes in HD, in the light of recent advances in neuroepigenetics. We particularly discuss studies using genome-wide scale approaches that provide insights into the relationship between epigenetic regulations, gene expression and neuronal activity in normal and diseased neurons, including HD neurons...
2017: Frontiers in Human Neuroscience
R Delgado-Morales, M Esteller
Dementia is a complex clinical condition characterized by several cognitive impairments that interfere with patient independence in executing everyday tasks. Various neurodegenerative disorders have dementia in common among their clinical manifestations. In addition, these diseases, such as Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies and frontotemporal dementia, share molecular alterations at the neuropathological level. In recent years, the field of neuroepigenetics has expanded massively and it is now clear that epigenetic processes, such as DNA methylation, are mechanisms involved in both normal and pathological brain function...
April 2017: Molecular Psychiatry
Justyna Cholewa-Waclaw, Adrian Bird, Melanie von Schimmelmann, Anne Schaefer, Huimei Yu, Hongjun Song, Ram Madabhushi, Li-Huei Tsai
Neuroepigenetics is a newly emerging field in neurobiology that addresses the epigenetic mechanism of gene expression regulation in various postmitotic neurons, both over time and in response to environmental stimuli. In addition to its fundamental contribution to our understanding of basic neuronal physiology, alterations in these neuroepigenetic mechanisms have been recently linked to numerous neurodevelopmental, psychiatric, and neurodegenerative disorders. This article provides a selective review of the role of DNA and histone modifications in neuronal signal-induced gene expression regulation, plasticity, and survival and how targeting these mechanisms could advance the development of future therapies...
November 9, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Ashley M Blouin, Stephanie E Sillivan, Nadine F Joseph, Courtney A Miller
Prolonged distress and dysregulated memory processes are the core features of post-traumatic stress disorder (PTSD) and represent the debilitating, persistent nature of the illness. However, the neurobiological mechanisms underlying the expression of these symptoms are challenging to study in human patients. Stress-enhanced fear learning (SEFL) paradigms, which encompass both stress and memory components in rodents, are emerging as valuable preclinical models of PTSD. Rodent models designed to study the long-term mechanisms of either stress or fear memory alone have identified a critical role for numerous epigenetic modifications to DNA and histone proteins...
October 2016: Learning & Memory
Paul Marshall, Timothy W Bredy
A complete understanding of the fundamental mechanisms of learning and memory continues to elude neuroscientists. Although many important discoveries have been made, the question of how memories are encoded and maintained at the molecular level remains. To date, this issue has been framed within the context of one of the most dominant concepts in molecular biology, the central dogma, and the result has been a protein-centric view of memory. Here we discuss the evidence supporting a role for neuroepigenetic mechanisms, which constitute dynamic and reversible, state-dependent modifications at all levels of control over cellular function, and their role in learning and memory...
2016: NPJ Science of Learning
Hsiao-Ying Wey, Tonya M Gilbert, Nicole R Zürcher, Angela She, Anisha Bhanot, Brendan D Taillon, Fredrick A Schroeder, Changing Wang, Stephen J Haggarty, Jacob M Hooker
Epigenetic dysfunction is implicated in many neurological and psychiatric diseases, including Alzheimer's disease and schizophrenia. Consequently, histone deacetylases (HDACs) are being aggressively pursued as therapeutic targets. However, a fundamental knowledge gap exists regarding the expression and distribution of HDACs in healthy individuals for comparison to disease states. Here, we report the first-in-human evaluation of neuroepigenetic regulation in vivo. Using positron emission tomography with [(11)C]Martinostat, an imaging probe selective for class I HDACs (isoforms 1, 2, and 3), we found that HDAC expression is higher in cortical gray matter than in white matter, with conserved regional distribution patterns within and between healthy individuals...
August 10, 2016: Science Translational Medicine
Emily L Ricq, Jacob M Hooker, Stephen J Haggarty
The mammalian brain dynamically activates or silences gene programs in response to environmental input and developmental cues. This neuroplasticity is controlled by signaling pathways that modify the activity, localization, and/or expression of transcriptional-regulatory enzymes in combination with alterations in chromatin structure in the nucleus. Consistent with this key neurobiological role, disruptions in the fine-tuning of epigenetic and transcriptional regulation have emerged as a recurrent theme in studies of the genetics of neurodevelopmental and neuropsychiatric disorders...
December 2016: Psychiatry and Clinical Neurosciences
L A Farrelly, B D Dill, H Molina, M R Birtwistle, I Maze
Characterizing the dynamic behavior of nucleosomes in the central nervous system is vital to our understanding of brain-specific chromatin-templated processes and their roles in transcriptional plasticity. Histone turnover-the complete loss of old, and replacement by new, nucleosomal histones-is one such phenomenon that has recently been shown to be critical for cell-type-specific transcription in brain, synaptic plasticity, and cognition. Such revelations that histones, long believed to static proteins in postmitotic cells, are highly dynamic in neurons were only possible owing to significant advances in analytical chemistry-based techniques, which now provide a platform for investigations of histone dynamics in both healthy and diseased tissues...
2016: Methods in Enzymology
Andrew J Kennedy, J David Sweatt
Over the past decade, since epigenetic mechanisms were first implicated in memory formation and synaptic plasticity, dynamic DNA methylation reactions have been identified as integral to long-term memory formation, maintenance, and recall. This review incorporates various new findings that DNA methylation mechanisms are important regulators of non-Hebbian plasticity mechanisms, suggesting that these epigenetic mechanisms are a fundamental link between synaptic plasticity and metaplasticity. Because the field of neuroepigenetics is so young and the biochemical tools necessary to probe gene-specific questions are just now being developed and used, this review also speculates about the direction and potential of therapeutics that target epigenetic mechanisms in the central nervous system and the unique pharmacokinetic and pharmacodynamic properties that epigenetic therapies may possess...
May 2016: Critical Reviews in Biochemistry and Molecular Biology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"