Read by QxMD icon Read

systems engineering

Zhe Li, Jian-Guo Zhang, Yan Ye, Xiaoping Li
BACKGROUND: Accurate implantation of a depth electrode into the brain is of the greatest importance in deep brain stimulation (DBS), and various stereotactic systems have been developed for electrode implantation. However, an updated analysis of depth electrode implantation in the modern era of DBS is lacking. OBJECTIVE: This study aims at providing an updated review on targeting accuracy of DBS electrode implantation by analyzing contemporary DBS electrode implantation operations from the perspective of precision engineering...
October 27, 2016: Stereotactic and Functional Neurosurgery
Chunxiang Feng, Jinqian Hu, Chang Liu, Shiliang Liu, Guiying Liao, Linjie Song, Xiaoyong Zeng
The increased incidence of stress urinary incontinence (SUI) in postmenopausal women has been proposed to be associated with a reduction in the level of 17-β estradiol (E2). E2 has also been shown to enhance the multi-differentiation ability of adipose-derived stem cells (ASCs) in vitro. However, studies on the potential value of E2 for tissue engineering in SUI treatment are rare. In the present study, we successfully fabricated myogenically differentiated ASCs (MD-ASCs), which were seeded onto a Poly(l-lactide)/Poly(e-caprolactone) electrospinning nano-scaffold, and incorporated E2 into the system, with the aim of improving the proliferation and myogenic differentiation of ASCs...
2016: PloS One
Jeong Eun Hyeon, Sang Kyu Shin, Sung Ok Han
The utilization of scaffolds for enzyme immobilization involves advanced bionanotechnology applications in biorefinery fields, which can be achieved by optimizing the function of various enzymes. This review presents various current scaffolding techniques based on proteins, microbes and nanomaterials for enzyme immobilization, as well as the impact of these techniques on the biorefinery of lignocellulosic materials. Among them, architectural scaffolds have applied to useful strategies for protein engineering to improve the performance of immobilized enzymes in several industrial and research fields...
October 26, 2016: Biotechnology Journal
Alejandro Gonzalez-Martinez, Alejandro Rodriguez-Sanchez, M C M van Loosdrecht, Jesus Gonzalez-Lopez, Riku Vahala
The nitrogen cycle has been expanded with the recent discovery of Nitrospira strains that can conduct complete ammonium oxidation (commamox). Their importance in the nitrogen cycle within engineered ecosystems has not yet been analyzed. In this research, the community structure of the Bacteria domain of six full-scale activated sludge systems and three autotrophic nitrogen removal systems in the Netherlands and China has been investigated through tag-454-pyrosequencing. The phylogenetic analyses conducted in the present study showed that just a few of the Nitrospira sequences found in the bioreactors were comammox...
October 26, 2016: Environmental Science and Pollution Research International
Amornpan Klanchui, Nachon Raethong, Peerada Prommeenate, Wanwipa Vongsangnak, Asawin Meechai
Cyanobacteria, the phototrophic microorganisms, have attracted much attention recently as a promising source for environmentally sustainable biofuels production. However, barriers for commercial markets of cyanobacteria-based biofuels concern the economic feasibility. Miscellaneous strategies for improving the production performance of cyanobacteria have thus been developed. Among these, the simple ad hoc strategies resulting in failure to optimize fully cell growth coupled with desired product yield are explored...
October 26, 2016: Advances in Biochemical Engineering/biotechnology
Fernando Pastor
The renaissance of cancer immunotherapy is, nowadays, a reality. In the near future, it will be very likely among the first-line treatments for cancer patients. There are several different approaches to modulate the immune system to fight against tumor maladies but, so far, monoclonal antibodies may currently be the most successful immuno-tools used to that end. The number of ongoing clinical trials with monoclonal antibodies has been increasing exponentially over the last few years upon the Food and Drug Administration (FDA) approval of the first immune-checkpoint blockade antibodies...
October 24, 2016: Pharmaceuticals
N C Carvalho, Y Fan, M E Tobar
In the context of engineered quantum systems, there is a demand for superconducting tunable devices, able to operate with high-quality factors at power levels equivalent to only a few photons. In this work, we developed a 3D microwave re-entrant cavity with such characteristics ready to provide a very fine-tuning of a high-Q resonant mode over a large dynamic range. This system has an electronic tuning mechanism based on a mechanically amplified piezoelectric actuator, which controls the resonator dominant mode frequency by changing the cavity narrow gap by very small displacements...
September 2016: Review of Scientific Instruments
Qingguo Yang, Dongbing Liu, Jian Mu, Xianbin Huang, Jiakun Dan, Xudong Xie, Wu Deng, Shuping Feng, Meng Wang, Yan Ye, Qixian Peng, Zeren Li
The x-ray backlighting systems, including a 1.865 keV (Si Heα line) spherically bent crystal imaging system and an ∼8.3 keV (Cu Heα line) point-projection imaging system, newly fielded on the Primary Test Stand facility are introduced and its preliminary experimental results in radiography of the aluminium (Al) liners with seeded sinusoidal perturbations are presented. The x-ray backlighter source is created using a 1 TW, 1 kJ Nd: glass high power laser, kilo-joule laser system, recently constructed at China Academy of Engineering Physics...
September 2016: Review of Scientific Instruments
Jodi L Connell, Eric T Ritschdorff, Jason B Shear
Advances in microscopic three-dimensional (µ3D) printing provide a means to microfabricate an almost limitless range of arbitrary geometries, offering new opportunities to rapidly prototype complex architectures for microfluidic and cellular applications. Such 3D lithographic capabilities present the tantalizing prospect for engineering micromechanical components - for example, pumps and valves - for cellular environments comprised of smart materials whose size, shape, permeability, stiffness, and other attributes might be modified in real time to precisely manipulate ultra-low-volume samples...
October 26, 2016: Analytical Chemistry
Tereza Cervena, Andrea Rossnerova, Jitka Sikorova, Vit Beranek, Michal Vojtisek-Lom, Miroslav Ciganek, Jan Topinka, Pavel Rossner
Internal combustion engine emissions belong among the major anthropogenic sources of air pollution in urban areas. According to the International Agency for Research on Cancer (IARC), there is sufficient evidence of the carcinogenicity of diesel exhaust in humans. Although alternative fuels, mainly biodiesel, have recently become popular, little is still known about the genotoxicity of emissions from these fuels. We analysed DNA damage expressed as the frequency of micronuclei (MN) in human bronchial epithelial cells (BEAS-2B), induced by extractable organic matter (EOM; tested concentrations: 1, 10 and 25 μg/ml) obtained from particle emissions from various blends of biodiesel with diesel fuels (including neat diesel fuel (B0), a blend of 70% B0 and 30% biodiesel (B30) and neat biodiesel (B100))...
October 26, 2016: Basic & Clinical Pharmacology & Toxicology
Christoph Q Schmidt, John D Lambris, Daniel Ricklin
The complement cascade is an ancient immune-surveillance system that not only provides protection from pathogen invasion but has also evolved to participate in physiological processes to maintain tissue homeostasis. The alternative pathway (AP) of complement activation is the evolutionarily oldest part of this innate immune cascade. It is unique in that it is continuously activated at a low level and arbitrarily probes foreign, modified-self, and also unaltered self-structures. This indiscriminate activation necessitates the presence of preformed regulators on autologous surfaces to spare self-cells from the undirected nature of AP activation...
November 2016: Immunological Reviews
Patrick M Shih, Khanh Vuu, Nasim Mansoori, Leïla Ayad, Katherine B Louie, Benjamin P Bowen, Trent R Northen, Dominique Loqué
The advent and growth of synthetic biology has demonstrated its potential as a promising avenue of research to address many societal needs. However, plant synthetic biology efforts have been hampered by a dearth of DNA part libraries, versatile transformation vectors and efficient assembly strategies. Here, we describe a versatile system (named jStack) utilizing yeast homologous recombination to efficiently assemble DNA into plant transformation vectors. We demonstrate how this method can facilitate pathway engineering of molecules of pharmaceutical interest, production of potential biofuels and shuffling of disease-resistance traits between crop species...
October 26, 2016: Nature Communications
Chengwei Wang, Celso Grebogi, Murilo S Baptista
The electric power system is one of the cornerstones of modern society. One of its most serious malfunctions is the blackout, a catastrophic event that may disrupt a substantial portion of the system, playing havoc to human life and causing great economic losses. Thus, understanding the mechanisms leading to blackouts and creating a reliable and resilient power grid has been a major issue, attracting the attention of scientists, engineers, and stakeholders. In this paper, we study the blackout problem in power grids by considering a practical phase-oscillator model...
September 2016: Chaos
Iara P Calil, Elizabeth P B Fontes
BACKGROUND: Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant-virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant-virus interactions that affect disease or resistance...
October 24, 2016: Annals of Botany
Alejandro Garbino, Derek M Nusbaum, Daniel M Buckland, Anil S Menon, Jonathan B Clark, Erik L Antonsen
The Stratex Project is a high altitude balloon flight that culminated in a freefall from 41,422 m (135,890 ft), breaking the record for the highest freefall to date. Crew recovery operations required an innovative approach due to the unique nature of the event as well as the equipment involved. The parachutist donned a custom space suit similar to a NASA Extravehicular Mobility Unit (EMU), with life support system mounted to the front and a parachute on the back. This space suit had a metal structure around the torso, which, in conjunction with the parachute and life support assembly, created a significant barrier to extraction from the suit in the event of a medical emergency...
2016: Aerospace Medicine and Human Performance
Fumiaki Shima, Hirokazu Narita, Ayami Hiura, Hiroshi Shimoda, Mitsuru Akashi
There is considerable global demand for three-dimensional (3D) functional tissues which mimic our native organs and tissues for use as in vitro drug screening systems and in regenerative medicine. In particular, there has been an increasing number of patients who suffer from arterial diseases such as arteriosclerosis. As such, in vitro 3D arterial wall models that can evaluate the effects of novel medicines and a novel artificial graft for the treatment are required. In our previous study, we reported the rapid construction of 3D tissues by employing a Layer-by-Layer (LbL) technique and revealed their potential applications in the pharmaceutical fields and tissue engineering...
October 25, 2016: Journal of Biomedical Materials Research. Part A
Maria Giovanna Sabbieti, Alessandra Dubbini, Fulvio Laus, Emanuele Paggi, Andrea Marchegiani, Melania Capitani, Luigi Marchetti, Fabrizio Dini, Tina Vermonden, Piera Di Martino, Dimitrios Agas, Roberta Censi
The present study reports on the biocompatibility in vivo after intramuscular and subcutaneous administration in Balb/c mice of vinyl sulphone bearing p(HPMAm-lac1-2)-PEG-p(HPMAm-lac1-2)/thiolated hyaluronic acid hydrogels, designed as novel injectable biomaterials for potential application in the fields of tissue engineering and regenerative medicine. Ultrasonography, used as a method to study hydrogel gelation and residence time in vivo, showed that, upon injection, the biomaterial efficiently formed a hydrogel by simultaneous thermal gelation and Michael Addition cross-linking forming a viscoelastic spherical depot at the injection site...
October 24, 2016: Journal of Tissue Engineering and Regenerative Medicine
Shalev Gihaz, Diána Weiser, Adi Dror, Péter Sátorhelyi, Moran Jerabek-Willemsen, László Poppe, Ayelet Fishman
Two ternary sol-gel matrices, an octyltriethoxysilane-based aliphatic matrix and a phenyltriethoxysilane (PTEOS)-based aromatic matrix, were used to immobilize a methanol-stable variant of lipase from Geobacillus stearothermophilus T6 for the synthesis of biodiesel from waste oil. Superior thermal stability of the mutant versus the wildtype in methanol was confirmed by intrinsic protein fluorescence measurements. The influence of skim milk and soluble E. coli lysate proteins as bulking and stabilizing agents in conjunction with sol-gel entrapment were investigated...
October 25, 2016: ChemSusChem
I Stefani, M A Asnaghi, J J Cooper-White, S Mantero
Cardiovascular diseases represent a major global health burden, with high rates of mortality and morbidity. Autologous grafts are commonly used to replace damaged or failing blood vessels, however such approaches are hampered by the scarcity of suitable graft tissue, donor site morbidity and poor long-term stability. Tissue engineering has been investigated as a means by which exogenous vessel grafts can be produced, with varying levels of success to date, a result of mismatched mechanical properties of these vessel substitutes and inadequate ex vivo vessel tissue genesis...
October 24, 2016: Journal of Tissue Engineering and Regenerative Medicine
Yohannes Yihdego, Len Drury
Analytical and empirical solution coupled with water balance method were used to predict the ground water inflow to a mine pit excavated below the water table, final pit lake level/recovery and radius of influence, through long-term and time variant simulations. The solution considers the effect of decreased saturated thickness near the pit walls, distributed recharge to the water table and upward flow through the pit bottom. The approach is flexible to accommodate the anisotropy/heterogeneity of the real world...
November 2016: Environmental Monitoring and Assessment
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"