Read by QxMD icon Read

HESC and dopaminergic neurons

Boxian Huang, Song Ning, Qinjing Zhang, Aiqin Chen, Chunyan Jiang, Yugui Cui, Jian Hu, Hong Li, Guoping Fan, Lianju Qin, Jiayin Liu
Bisphenol A (BPA) is a ubiquitous compound emerging as a possible toxicant during embryonic development. Human embryonic stem cell (hESC) promises a valuable model for evaluating the effects of environmental chemicals on human prenatal development. In our study, 1 μM BPA were applied to hESC-derived embryoid bodies (hEBs) and effects of BPA on neural cell differentiation were investigated. The expression level of insulin-like growth factor 1 (IGF-1) and marker genes for ectoderm, neuron progenitor cells, and dopaminergic (DA) neurons were all repressed upon BPA exposure...
June 7, 2016: Molecular Neurobiology
Mingming Li, Yu Zou, Qiqi Lu, Ning Tang, Alexis Heng, Intekhab Islam, Huei Jinn Tong, Gavin S Dawe, Tong Cao
BACKGROUND: Parkinson's disease (PD) is a severe neurodegenerative disease associated with loss of dopaminergic neurons. Derivation of dopaminergic neurons from human embryonic stem cells (hESCs) could provide new therapeutic options for PD therapy. Dopaminergic neurons are derived from SOX(-) floor plate (FP) cells during embryonic development in many species and in human cell culture in vitro. Early treatment with sonic hedgehog (Shh) has been reported to efficiently convert hESCs into FP lineages...
2016: Journal of Biomedical Science
Wen Li, Shengdi Chen, Jia-Yi Li
Human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) are two novel cell sources for studying neurodegenerative diseases. Dopaminergic neurons derived from hiPSCs/hESCs have been implicated to be very useful in Parkinson's disease (PD) research, including cell replacement therapy, disease modeling and drug screening. Recently, great efforts have been made to improve the application of hiPSCs/hESCs in PD research. Considerable advances have been made in recent years, including advanced reprogramming strategies without the use of viruses or using fewer transcriptional factors, optimized methods for generating highly homogeneous neural progenitors with a larger proportion of mature dopaminergic neurons and better survival and integration after transplantation...
November 2015: Progress in Neurobiology
Mi-Sun Lim, Min-Seop Shin, Soo Young Lee, Yang-Ki Minn, Jeong-Kyu Hoh, Youl-Hee Cho, Dong-Wook Kim, Sang-Hun Lee, Chun-Hyung Kim, Chang-Hwan Park
Directed methods for differentiating human embryonic stem cells (hESCs) into dopaminergic (DA) precursor cells using stromal cells co-culture systems are already well established. However, not all of the hESCs differentiate into DA precursors using these methods. HSF6, H1, H7, and H9 cells differentiate well into DA precursors, but CHA13 and CHA15 cells hardly differentiate. To overcome this problem, we modified the differentiation system to include a co-culturing step that exposes the cells to noggin early in the differentiation process...
2015: PloS One
Zhixing Hu, Jiali Pu, Houbo Jiang, Ping Zhong, Jingxin Qiu, Feng Li, Xiaomin Wang, Baorong Zhang, Zhen Yan, Jian Feng
The lack of robust Parkinson's disease (PD) phenotype in parkin knockout rodents and the identification of defective dopaminergic (DA) neurotransmission in midbrain DA neurons derived from induced pluripotent stem cells (iPSC) of PD patients with parkin mutations demonstrate the utility of patient-specific iPSCs as an effective system to model the unique vulnerabilities of midbrain DA neurons in PD. Significant efforts have been directed at developing efficient genomic engineering technologies in human iPSCs to study diseases such as PD...
November 1, 2015: Stem Cells and Development
Jeong Eun Lee, Mi Sun Lim, Jae Hyun Park, Chang Hwan Park, Hyun Chul Koh
It has recently been reported that the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway regulates neuronal differentiation of neural stem cells (NSCs) derived from rats or mice and is essential for the self-renewal of human embryonic stem cells (hESCs). However, the roles of PI3K/Akt/mTOR signaling pathways during proliferation and dopaminergic neuronal differentiation of human neural stem cells (hNSCs) are poorly understood. In this study, we examined the effect of regulation of these intracellular signaling pathways in hNSCs on the potential to maintain proliferation and induce dopaminergic neuronal differentiation...
August 2016: Molecular Neurobiology
Parinya Noisa, Taneli Raivio, Wei Cui
Human embryonic stem cells (hESCs) are able to proliferate in vitro indefinitely without losing their ability to differentiate into multiple cell types upon exposure to appropriate signals. Particularly, the ability of hESCs to differentiate into neuronal subtypes is fundamental to develop cell-based therapies for several neurodegenerative disorders, such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. In this study, we differentiated hESCs to dopaminergic neurons via an intermediate stage, neural progenitor cells (NPCs)...
2015: Stem Cells International
M Oktar Guloglu, Anna Larsen
Human embryonic stem cells (hESCs) are a promising source for cell replacement therapies. Parkinson's disease is one of the candidate diseases for the cell replacement therapy since the motor manifestations of the disease are associated with the loss of dopaminergic neurons in the substantia nigra pars compacta. Stromal cell-derived inducing activity (SDIA) is the most commonly used method for the dopaminergic differentiation of hESCs. This chapter describes a simple, reliable, and scalable dopaminergic induction method of hESCs using PA6-derived adipocytes...
2016: Methods in Molecular Biology
Julius A Steinbeck, Se Joon Choi, Ana Mrejeru, Yosif Ganat, Karl Deisseroth, David Sulzer, Eugene V Mosharov, Lorenz Studer
Recent studies have shown evidence of behavioral recovery after transplantation of human pluripotent stem cell (PSC)-derived neural cells in animal models of neurological disease. However, little is known about the mechanisms underlying graft function. Here we use optogenetics to modulate in real time electrophysiological and neurochemical properties of mesencephalic dopaminergic (mesDA) neurons derived from human embryonic stem cells (hESCs). In mice that had recovered from lesion-induced Parkinsonian motor deficits, light-induced selective silencing of graft activity rapidly and reversibly re-introduced the motor deficits...
February 2015: Nature Biotechnology
Fan Yang, Yunhui Liu, Jie Tu, Jun Wan, Jie Zhang, Bifeng Wu, Shanping Chen, Jiawei Zhou, Yangling Mu, Liping Wang
Astrocytes provide neuroprotective effects against degeneration of dopaminergic (DA) neurons and play a fundamental role in DA differentiation of neural stem cells. Here we show that light illumination of astrocytes expressing engineered channelrhodopsin variant (ChETA) can remarkably enhance the release of basic fibroblast growth factor (bFGF) and significantly promote the DA differentiation of human embryonic stem cells (hESCs) in vitro. Light activation of transplanted astrocytes in the substantia nigra (SN) also upregulates bFGF levels in vivo and promotes the regenerative effects of co-transplanted stem cells...
2014: Nature Communications
Ali Fathi, Hassan Rasouli, Meghdad Yeganeh, Ghassem Hosseini Salekdeh, Hossein Baharvand
Direct differentiation of dopaminergic (DA) neurons from human pluripotent stem cells (hPSCs) in the absence of gene manipulation is the most desired alternative to clinical treatment of Parkinson disease. Protein transduction-based methods could be efficient, safe approaches to enhance direct differentiation of human embryonic stem cells (hESCs) to DA neurons. In the present study, we compared the differentiation efficiency of DA neurons from hESCs with and without the application of LIM homeobox transcription factor 1 alpha (LMX1A), a master regulatory protein in the development of the midbrain neurons and SHH proteins...
February 2015: Molecular Biotechnology
Pengbo Zhang, Ninuo Xia, Renee A Reijo Pera
Dopaminergic (DA) neurons in the substantia nigra pars compacta (also known as A9 DA neurons) are the specific cell type that is lost in Parkinson's disease (PD). There is great interest in deriving A9 DA neurons from human pluripotent stem cells (hPSCs) for regenerative cell replacement therapy for PD. During neural development, A9 DA neurons originate from the floor plate (FP) precursors located at the ventral midline of the central nervous system. Here, we optimized the culture conditions for the stepwise differentiation of hPSCs to A9 DA neurons, which mimics embryonic DA neuron development...
2014: Journal of Visualized Experiments: JoVE
Wen-Ting Hsieh, Been-Huang Chiang
Stimulation of endogenous neurogenesis is a potential approach to compensate for loss of dopaminergic neurons of substantia nigra compacta nigra (SNpc) in patients with Parkinson's disease (PD). This objective was to establish an in vitro model by differentiating pluripotent human embryonic stem cells (hESCs) into midbrain dopaminergic (mDA) neurons for screening phytochemicals with mDA neurogenesis-boosting potentials. Consequently, a five-stage differentiation process was developed. The derived cells expressed many mDA markers including tyrosine hydroxylase (TH), β-III tubulin, and dopamine transporter (DAT)...
July 9, 2014: Journal of Agricultural and Food Chemistry
Rajesh Ambasudhan, Nima Dolatabadi, Anthony Nutter, Eliezer Masliah, Scott R Mckercher, Stuart A Lipton
Neural transplantation is a promising strategy for restoring dopaminergic dysfunction and modifying disease progression in Parkinson's disease (PD). Human embryonic stem cells (hESCs) are a potential resource in this regard because of their ability to provide a virtually limitless supply of homogenous dopaminergic progenitors and neurons of appropriate lineage. The recent advances in developing robust cell culture protocols for directed differentiation of hESCs to near pure populations of ventral mesencephalic (A9-type) dopaminergic neurons has heightened the prospects for PD cell therapy...
August 15, 2014: Journal of Comparative Neurology
Tandis Vazin, Randolph S Ashton, Anthony Conway, Nikhil A Rode, Susan M Lee, Verenice Bravo, Kevin E Healy, Ravi S Kane, David V Schaffer
Stem cell differentiation is regulated by complex repertoires of signaling ligands which often use multivalent interactions, where multiple ligands tethered to one entity interact with multiple cellular receptors to yield oligomeric complexes. One such ligand is Sonic hedgehog (Shh), whose posttranslational lipid modifications and assembly into multimers enhance its biological potency, potentially through receptor clustering. Investigations of Shh typically utilize recombinant, monomeric protein, and thus the impact of multivalency on ligand potency is unexplored...
January 2014: Biomaterials
Sergey Malchenko, Jianping Xie, Maria de Fatima Bonaldo, Elio F Vanin, Bula J Bhattacharyya, Abdelhak Belmadani, Guifa Xi, Vasily Galat, William Goossens, Richard E B Seftor, Tadanori Tomita, John Crispino, Richard J Miller, Martha C Bohn, Mary J C Hendrix, Marcelo B Soares
In vitro neural differentiation of human embryonic stem cells (hESCs) is an advantageous system for studying early neural development. The process of early neural differentiation in hESCs begins by initiation of primitive neuroectoderm, which is manifested by rosette formation, with consecutive differentiation into neural progenitors and early glial-like cells. In this study, we examined the involvement of early neural markers - OTX2, PAX6, Sox1, Nestin, NR2F1, NR2F2, and IRX2 - in the onset of rosette formation, during spontaneous neural differentiation of hESC and human induced pluripotent stem cell (hiPSC) colonies...
January 25, 2014: Gene
Jaemin Kim, Perminder Sachdev, Kuldip Sidhu
Human embryonic stem cells (hESCs) are emerging as an attractive alternative source for cell replacement therapy since the cells can be expanded in culture indefinitely and differentiated into any cell types in the body. In order to optimize cell-to-cell interaction, cell proliferation and differentiation into specific lineages as well as tissue organization, it is important to provide a microenvironment for the hESCs which mimics the stem cell niche. One approach is to provide a three-dimensional (3D) environment such as encapsulation...
November 2013: Stem Cell Research
Maria Sundberg, Helle Bogetofte, Tristan Lawson, Johan Jansson, Gaynor Smith, Arnar Astradsson, Michele Moore, Teresia Osborn, Oliver Cooper, Roger Spealman, Penelope Hallett, Ole Isacson
The main motor symptoms of Parkinson's disease are due to the loss of dopaminergic (DA) neurons in the ventral midbrain (VM). For the future treatment of Parkinson's disease with cell transplantation it is important to develop efficient differentiation methods for production of human iPSCs and hESCs-derived midbrain-type DA neurons. Here we describe an efficient differentiation and sorting strategy for DA neurons from both human ES/iPS cells and non-human primate iPSCs. The use of non-human primate iPSCs for neuronal differentiation and autologous transplantation is important for preclinical evaluation of safety and efficacy of stem cell-derived DA neurons...
August 2013: Stem Cells
Dustin R Wakeman, Stephanie Weiss, John R Sladek, John D Elsworth, Brian Bauereis, Csaba Leranth, Patrick J Hurley, Robert H Roth, D Eugene Redmond
A human embryonic stem cell (HESC) line, H1, was studied after differentiation to a dopaminergic phenotype in vitro in order to carry out in vivo studies in Parkinsonian monkeys. To identify morphological characteristics of transplanted donor cells, HESCs were transfected with a GFP lentiviral vector. Gene expression studies were performed at each step of a neural rosette-based dopaminergic differentiation protocol by RT-PCR. In vitro immunofluorescence revealed that >90% of the differentiated cells exhibited a neuronal phenotype by β-III-tubulin immunocytochemistry, with 17% of the cells coexpressing tyrosine hydroxylase prior to implantation...
2014: Cell Transplantation
Xuejun H Parsons, James F Parsons, Dennis A Moore
To date, lacking of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing effective cell-based therapies against a wide range of neurological disorders. Derivation of human embryonic stem cells (hESCs) provides a powerful tool to investigate the molecular controls in human embryonic neurogenesis as well as an unlimited source to generate the diversity of human neuronal cell types in the developing CNS for repair. However, realizing the developmental and therapeutic potential of hESCs has been hindered by conventional multi-lineage differentiation of pluripotent cells, which is uncontrollable, inefficient, highly variable, difficult to reproduce and scale-up...
December 10, 2012: Molecular Medicine & Therapeutics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"