Read by QxMD icon Read

Bacteriophage diagnostic

Kathryn M Frietze, Juan M Pascale, Brechla Moreno, Bryce Chackerian, David S Peabody
Identifying the targets of antibody responses during infection is important for designing vaccines, developing diagnostic and prognostic tools, and understanding pathogenesis. We developed a novel deep sequence-coupled biopanning approach capable of identifying the protein epitopes of antibodies present in human polyclonal serum. Here, we report the adaptation of this approach for the identification of pathogen-specific epitopes recognized by antibodies elicited during acute infection. As a proof-of-principle, we applied this approach to assessing antibodies to Dengue virus (DENV)...
2017: PloS One
H Anany, Y Chou, S Cucic, R Derda, S Evoy, M W Griffiths
The innate specificity of bacteriophages toward their hosts makes them excellent candidates for the development of detection assays. They can be used in many ways to detect pathogens, and each has its own advantages and disadvantages. Whole bacteriophages can carry reporter genes to alter the phenotype of the target. Bacteriophages can act as staining agents or the progeny of the infection process can be detected, which further increases the sensitivity of the detection assay. Compared with whole-phage particles, use of phage components as probes offers other advantages: for example, smaller probe size to enhance binding activity, phage structures that can be engineered for better affinity, as well as specificity, binding properties, and robustness...
February 28, 2017: Annual Review of Food Science and Technology
Eloy Gonzales-Gustavson, Yexenia Cárdenas-Youngs, Miquel Calvo, Marcelle Figueira Marques da Silva, Ayalkibet Hundesa, Inmaculada Amorós, Yolanda Moreno, Laura Moreno-Mesonero, Rosa Rosell, Llilianne Ganges, Rosa Araujo, Rosina Girones
In this study, the use of skimmed milk flocculation (SMF) to simultaneously concentrate viruses, bacteria and protozoa was evaluated. We selected strains of faecal indicator bacteria and pathogens, such as Escherichia coli and Helicobacter pylori. The viruses selected were adenovirus (HAdV 35), rotavirus (RoV SA-11), the bacteriophage MS2 and bovine viral diarrhoea virus (BVDV). The protozoa tested were Acanthamoeba, Giardia and Cryptosporidium. The mean recoveries with q(RT)PCR were 66% (HAdV 35), 24% (MS2), 28% (RoV SA-11), 15% (BVDV), 60% (E...
January 16, 2017: Journal of Microbiological Methods
Lisa O'Sullivan, Colin Buttimer, Olivia McAuliffe, Declan Bolton, Aidan Coffey
Bacteriophages (phages) are viruses that infect bacterial hosts, and since their discovery over a century ago they have been primarily exploited to control bacterial populations and to serve as tools in molecular biology. In this commentary, we highlight recent diverse advances in the field of phage research, going beyond bacterial control using whole phage, to areas including biocontrol using phage-derived enzybiotics, diagnostics, drug discovery, novel drug delivery systems and bionanotechnology.
2016: F1000Research
Ejike Nwokoro, Ross Leach, Christine Årdal, Enrico Baraldi, Kellie Ryan, Jens Plahte
BACKGROUND: The increasing threat of antimicrobial resistance combined with the paucity of new classes of antibiotics represents a serious public health challenge. New treatment technologies could, in theory, have a significant impact on the future use of traditional antibiotics, be it by facilitating rational and responsible use or by product substitution in the existing antibiotics markets, including by reducing the incidence of bacterial infections through preventative approaches. The aim of this paper is to assess the potential of alternative technologies in reducing clinical use of and demand for antibiotics, and to briefly indicate which segments of the antibiotics market that might be impacted by these technologies...
2016: Journal of Pharmaceutical Policy and Practice
Jordi Rello, Eleonora Bunsow, Antonio Perez
Bacterial resistance to antibiotics is increasing worldwide, due to the emergence of multidrug-resistant strains. With this panorama, there is a serious danger that we may be entering the 'post-antibiotic era'. Areas covered: We assess why so few new classes of antibiotics have been developed in the past years and discuss a variety of treatments that may be able to replace antimicrobials: monoclonal antibodies, bacteriophages, stem cells and anti-virulence agents such as liposomes. Expert commentary: There are a series of economic, scientific-research and regulatory reasons for the scarcity of new antimicrobials...
December 2016: Expert Review of Clinical Pharmacology
Ioana L Aanei, Adel M ElSohly, Michelle E Farkas, Chawita Netirojjanakul, Melanie Regan, Stephanie Taylor Murphy, James P O'Neil, Youngho Seo, Matthew B Francis
A variety of nanoscale scaffolds, including virus-like particles (VLPs), are being developed for biomedical applications; however, little information is available about their in vivo behavior. Targeted nanoparticles are particularly valuable as diagnostic and therapeutic carriers because they can increase the signal-to-background ratio of imaging agents, improve the efficacy of drugs, and reduce adverse effects by concentrating the therapeutic molecule in the region of interest. The genome-free capsid of bacteriophage MS2 has several features that make it well-suited for use in delivery applications, such as facile production and modification, the ability to display multiple copies of targeting ligands, and the capacity to deliver large payloads...
November 7, 2016: Molecular Pharmaceutics
Maryury Brown-Jaque, Maite Muniesa, Ferran Navarro
Bacteriophages are viruses that infect bacteria, and they are found everywhere their bacterial hosts are present, including the human body. To explore the presence of phages in clinical samples, we assessed 65 clinical samples (blood, ascitic fluid, urine, cerebrospinal fluid, and serum). Infectious tailed phages were detected in >45% of ascitic fluid and urine samples. Three examples of phage interference with bacterial isolation were observed. Phages prevented the confluent bacterial growth required for an antibiogram assay when the inoculum was taken from an agar plate containing lysis plaques, but not when taken from a single colony in a phage-free area...
2016: Scientific Reports
Valery A Petrenko, James W Gillespie
INTRODUCTION: New phage-directed nanomedicines have emerged recently as a result of the in-depth study of the genetics and structure of filamentous phage and evolution of phage display and phage nanobiotechnology. This review focuses on the progress made in the development of the cancer-targeted nanomaterials and discusses the trends in using phage as a bioselectable molecular navigation system. AREAS COVERED: The merging of phage display technologies with nanotechnology in recent years has proved promising in different areas of medicine and technology, such as medical diagnostics, molecular imaging, vaccine development and targeted drug/gene delivery, which is the focus of this review...
August 5, 2016: Expert Opinion on Drug Delivery
Carlos G Leon-Velarde, Lotta Happonen, Maria Pajunen, Katarzyna Leskinen, Andrew M Kropinski, Laura Mattinen, Monika Rajtor, Joanna Zur, Darren Smith, Shu Chen, Ayesha Nawaz, Roger P Johnson, Joseph A Odumeru, Mansel W Griffiths, Mikael Skurnik
UNLABELLED: Bacteriophages present huge potential both as a resource for developing novel tools for bacterial diagnostics and for use in phage therapy. This potential is also valid for bacteriophages specific for Yersinia enterocolitica To increase our knowledge of Y. enterocolitica-specific phages, we characterized two novel yersiniophages. The genomes of the bacteriophages vB_YenM_TG1 (TG1) and vB_YenM_ϕR1-RT (ϕR1-RT), isolated from pig manure in Canada and from sewage in Finland, consist of linear double-stranded DNA of 162,101 and 168,809 bp, respectively...
September 1, 2016: Applied and Environmental Microbiology
Joey N Talbert, Samuel D Alcaine, Sam R Nugen
Bacteriophages represent multifaceted building blocks that can be incorporated as substitutes for, or in unison with other detection methods, to create powerful new diagnostics for the detection of bacteria. The ease of phage manipulation, production, and detection speed clearly highlights that there remains unrealized opportunities to leverage these phage-based components in diagnostics amenable to resource-limited settings. The passage of regulations like the Food Safety Modernization act, and the ever increasing extent of global trade and travel, will create further demand for these types of diagnostics...
April 2016: Bioengineered
N R Telesmanich, E V Goncharenko, S O Chaika, I A Chaika, V O Telicheva
AIM: Study mechanisms of interaction of diagnostic bacteriophage El Tor with sensitive strain Vibrio cholerae El Tor 18507 using direct protein profiling, identification of constant and variable proteins, taking part in interaction of the phage and cell, as well as carbohydrate-specific phage receptors. MATERIALS AND METHODS: . A commercial preparation of cholera diagnostic bacteriophage El Tor, strain V. cholerae El Tor 18507 were used. Effect of carbohydrates on bacteriophage activity was determined in experiments with phage by a classic and modified by us method...
March 2016: Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii
Anupam A Sawant, Progya P Mukherjee, Rahul K Jangid, Sanjeev Galande, Seergazhi G Srivatsan
The development of robust tools and practical RNA labeling strategies that would facilitate the biophysical analysis of RNA in both cell-free and cellular systems will have profound implications in the discovery of new RNA diagnostic tools and therapeutic strategies. In this context, we describe the development of a new alkyne-modified UTP analog, 5-(1,7-octadinyl)uridine triphosphate (ODUTP), which serves as an efficient substrate for the introduction of a clickable alkyne label into RNA transcripts by bacteriophage T7 RNA polymerase and mammalian cellular RNA polymerases...
June 28, 2016: Organic & Biomolecular Chemistry
Svetlana P Ikonomova, Ziming He, Amy J Karlsson
Antibody fragments, such as the single-chain variable fragment (scFv), have much potential in research and diagnostics because of their antigen-binding ability similar to a full-sized antibody and their ease of production in microorganisms. Some applications of antibody fragments require immobilization on a surface, and we have established a simple immobilization method that is based on the biotin-streptavidin interaction and does not require a separate purification step. We genetically fused two biotinylation tags-the biotin carboxyl carrier protein (BCCP) or the AviTag minimal sequence-to six different scFvs (scFv13R4, scFvD10, scFv26-10, scFv3, scFv5, and scFv12) for site-specific biotinylation in vivo by endogenous biotin ligases produced by Escherichia coli...
August 2016: Journal of Immunological Methods
Dana Braff, David Shis, James J Collins
The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics...
April 18, 2016: Advanced Drug Delivery Reviews
Ruqaiyyah Siddiqui, Huma Kulsoom, Salima Lalani, Naveed Ahmed Khan
Balamuthia mandrillaris is a protist pathogen that can cause encephalitis with a mortality rate of more than 95%. Early diagnosis followed by aggressive treatment is a pre-requisite for successful prognosis. Current methods for identifying this organism rely on culture and microscopy, antibody-based methods using animals, or involve the use of molecular tools that are expensive. Here, we describe the isolation of antibody fragments that can be used for the unequivocal identification of B. mandrillaris. B. mandrillaris-specific antibody fragments were isolated from a bacteriophage antibody display library...
July 2016: Experimental Parasitology
S D Alcaine, K Law, S Ho, A J Kinchla, D A Sela, S R Nugen
Bacteriophage (phage) amplification is an attractive method for the detection of bacteria due to a narrow phage-host specificity, short amplification times, and the phages' ability to differentiate between viable and non-viable bacterial cells. The next step in phage-based bacteria detection is leveraging bioengineered phages to create low-cost, rapid, and easy-to-use detection platforms such as lateral flow assays. Our work establishes the proof-of-concept for the use of bioengineered T7 phage strains to increase the sensitivity of phage amplification-based lateral flow assays...
August 15, 2016: Biosensors & Bioelectronics
A A Byvalov, L G Dudina, I V Konyshev, S G Litvinets, E A Martinson
The effect of treatment of Yersinia pseudotuberculosis cells with antibodies of various specificities on adhesiveness of pseudotuberculosis bacteriophage was analyzed by competitive inhibition technique. Bacteriophage adsorption to bacteria was sterically inhibited by monoclonal antibodies to protein epitopes of Y. pseudotuberculosis outer membrane. These results suggest that receptors of pseudotuberculosis diagnostic bacteriophage are localized on the LPS core of microbial cell.
March 2016: Bulletin of Experimental Biology and Medicine
Cameron S Ball, Yooli K Light, Chung-Yan Koh, Sarah S Wheeler, Lark L Coffey, Robert J Meagher
Reverse-transcription-loop-mediated isothermal amplification (RT-LAMP) has frequently been proposed as an enabling technology for simplified diagnostic tests for RNA viruses. However, common detection techniques used for LAMP and RT-LAMP have drawbacks, including poor discrimination capability, inability to multiplex targets, high rates of false positives, and (in some cases) the requirement of opening reaction tubes postamplification. Here, we present a simple technique that allows closed-tube, target-specific detection, based on inclusion of a dye-labeled primer that is incorporated into a target-specific amplicon if the target is present...
April 5, 2016: Analytical Chemistry
Priscillia Lagoutte, Charlotte Mignon, Stéphanie Donnat, Gustavo Stadthagen, Jan Mast, Régis Sodoyer, Adrien Lugari, Bettina Werle
Virus-like particles (VLPs) are promising molecular structures for the design and construction of novel vaccines, diagnostic tools, and gene therapy vectors. Size, oligomer assembly and repetitiveness of epitopes are optimal features to induce strong immune responses. Several VLP-based vaccines are currently licensed and commercialized, and many vaccine candidates are now under preclinical and clinical studies. In recent years, the development of genetically engineered recombinant VLPs has accelerated the need for new, improved downstream processes...
June 2016: Journal of Virological Methods
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"