Read by QxMD icon Read

Pulsed electromagnetic field

Enerelt Urnukhsaikhan, Tsogbadrakh Mishig-Ochir, Soo-Chan Kim, Jung-Keug Park, Young-Kwon Seo
Low frequency-pulsed electromagnetic fields (LF-PEMFs) affect many biological processes; however, the fundamental mechanisms responsible for these effects remain unclear. Our study aimed to investigate the effect of LF-PEMFs on neuroprotection after ischemic stroke. C57B6 mice were exposed to LF-PEMF (F = 60 Hz, Bm = 10 mT) after photothrombotic occlusion. We measured the BDNF/TrkB/Akt signaling pathway, pro-apoptotic and pro-survival protein and gene expressions, and the expression of inflammatory mediators and performed behavioral tests in both LF-PEMF-treated and untreated ischemic stroke mice...
October 19, 2016: Applied Biochemistry and Biotechnology
Aram Gragossian, Denis V Seletskiy, Mansoor Sheik-Bahae
The interaction of intense near- and mid-infrared laser pulses with rare gases has produced bursts of radiation with spectral content extending into the extreme ultraviolet and soft x-ray region of electromagnetic spectrum. On the other end of the spectrum, laser-driven gas plasmas has been shown to produce coherent sub-harmonic optical waveforms, covering from terahertz (THz) to mid- and near-infrared frequency spectral band. Both processes can be enhanced via a combination of a driving field and its second harmonic...
October 19, 2016: Scientific Reports
Maria Vadalà, Julio Cesar Morales-Medina, Annamaria Vallelunga, Beniamino Palmieri, Carmen Laurino, Tommaso Iannitti
Cancer is one of the most common causes of death worldwide. Available treatments are associated with numerous side effects and only a low percentage of patients achieve complete remission. Therefore, there is a strong need for new therapeutic strategies. In this regard, pulsed electromagnetic field (PEMF) therapy presents several potential advantages including non-invasiveness, safety, lack of toxicity for non-cancerous cells, and the possibility of being combined with other available therapies. Indeed, PEMF stimulation has already been used in the context of various cancer types including skin, breast, prostate, hepatocellular, lung, ovarian, pancreatic, bladder, thyroid, and colon cancer in vitro and in vivo...
October 17, 2016: Cancer Medicine
Fuminao Kishimoto, Masayuki Matsuhisa, Shinichiro Kawamura, Satoshi Fujii, Shuntaro Tsubaki, Masato M Maitani, Eiichi Suzuki, Yuji Wada
Various microwave effects on chemical reactions have been observed, reported and compared to those carried out under conventional heating. These effects are classified into thermal effects, which arise from the temperature rise caused by microwaves, and non-thermal effects, which are attributed to interactions between substances and the oscillating electromagnetic fields of microwaves. However, there have been no direct or intrinsic demonstrations of the non-thermal effects based on physical insights. Here we demonstrate the microwave enhancement of oxidation current of water to generate dioxygen with using an α-Fe2O3 electrode induced by pulsed microwave irradiation under constantly applied potential...
October 14, 2016: Scientific Reports
R Pompili, M P Anania, F Bisesto, M Botton, M Castellano, E Chiadroni, A Cianchi, A Curcio, M Ferrario, M Galletti, Z Henis, M Petrarca, E Schleifer, A Zigler
Highly energetic electrons are generated at the early phases of the interaction of short-pulse high-intensity lasers with solid targets. These escaping particles are identified as the essential core of picosecond-scale phenomena such as laser-based acceleration, surface manipulation, generation of intense magnetic fields and electromagnetic pulses. Increasing the number of the escaping electrons facilitate the late time processes in all cases. Up to now only indirect evidences of these important forerunners have been recorded, thus no detailed study of the governing mechanisms was possible...
October 7, 2016: Scientific Reports
Jun Zhou, Yuan Liao, Haitao Xie, Ying Liao, Yahua Zeng, Neng Li, Guanghua Sun, Qi Wu, Guijuan Zhou
Ibandronate (IBN) and pulsed electromagnetic field (PEMF) have each shown positive effects for treating osteoporosis, but no study has evaluated the relative effects of these treatments combined. This study investigated the effects of IBN + PEMF on bone turnover, mineral density, microarchitecture, and biomechanical properties in an ovariectomized (OVX) rat model of osteoporosis. Fifty 3-month-old rats were randomly apportioned to receive a sham-operation (n = 10), or ovariectomy (n = 40). The latter group was equally divided as the model (OVX control) or to receive IBN, PEMF, or IBN + PEMF...
October 6, 2016: Bioelectromagnetics
Jian Li, Dan Wu, Yan Han
Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent "I-shape" is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils...
September 30, 2016: Sensors
Jian Lu, Yaqing Zhang, Harold Y Hwang, Benjamin K Ofori-Okai, Sharly Fleischer, Keith A Nelson
Ultrafast 2D spectroscopy uses correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum; its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. We report a demonstration of ultrafast 2D terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by multiple terahertz field-dipole interactions...
October 4, 2016: Proceedings of the National Academy of Sciences of the United States of America
Julio J Jauregui, Anthony V Ventimiglia, Preston W Grieco, David B Frumberg, John E Herzenberg
BACKGROUND: Limb lengthening with external fixation is performed to treat patients with leg length discrepancy or short stature. Although the procedure has a high rate of success, one potential drawback from limb lengthening is the amount of time spent in the fixation device while regenerate bone consolidates. Although some studies have assessed different treatment modalities, there has not been a study that has systematically evaluated whether low intensity pulsed ultrasound (LIPUS) or pulsed electromagnetic fields (PEMF) have significant effects on regenerate bone growth...
September 29, 2016: BMC Musculoskeletal Disorders
Mingke Jiao, Lin Lou, Lin Jiao, Jie Hu, Peng Zhang, Zhongming Wang, Wenjuan Xu, Xiliang Geng, Hongping Song
Plateau frostbite (PF) treatments have remained a clinical challenge because this condition injures tissues in deep layers and affected tissues exhibit unique pathological characteristics. For instance, low-frequency pulsed electromagnetic field (PEMF) can affect tissue restoration and penetrate tissues. Therefore, the effect of PEMF on PF healing should be investigated. This study aimed to evaluate the effects of low-frequency PEMF on PF healing systematically. Ninety-six Sprague-Dawley rats were randomly and equally divided into three groups: normal control, partial thickness plateau frostbite (PTPF), and PTPF with low-frequency PEMF exposure (PTPF + PEMF)...
September 29, 2016: Wound Repair and Regeneration
Yuan Zheng, G Wilson Miller, William A Tobias, Gordon D Cates
Magnetic resonance imaging (MRI) provides fine spatial resolution, spectral sensitivity and a rich variety of contrast mechanisms for diagnostic medical applications. Nuclear imaging using γ-ray cameras offers the benefits of using small quantities of radioactive tracers that seek specific targets of interest within the body. Here we describe an imaging and spectroscopic modality that combines favourable aspects of both approaches. Spatial information is encoded into the spin orientations of tiny amounts of a polarized radioactive tracer using pulses of both radio-frequency electromagnetic radiation and magnetic-field gradients, as in MRI...
2016: Nature
Kwang-Kyoon Park, Tian-Ming Zhao, Jong-Chan Lee, Young-Tak Chough, Yoon-Ho Kim
We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses...
September 28, 2016: Scientific Reports
Stefano Mandija, Petar I Petrov, Sebastian F W Neggers, Peter R Luijten, Cornelis A T van den Berg
Transcranial magnetic stimulation (TMS) is an emerging technique that allows non-invasive neurostimulation. However, the correct validation of electromagnetic models of typical TMS coils and the correct assessment of the incident TMS field (BTMS ) produced by standard TMS stimulators are still lacking. Such a validation can be performed by mapping BTMS produced by a realistic TMS setup. In this study, we show that MRI can provide precise quantification of the magnetic field produced by a realistic TMS coil and a clinically used TMS stimulator in the region in which neurostimulation occurs...
September 27, 2016: NMR in Biomedicine
Fabrizio Vincenzi, Annalisa Ravani, Silvia Pasquini, Stefania Merighi, Stefania Gessi, Stefania Setti, Ruggero Cadossi, Pier Andrea Borea, Katia Varani
In the present study, the effect of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) has been investigated by using different cell lines derived from neuron-like cells and microglial cells. In particular, the primary aim was to evaluate the effect of PEMF exposure in inflammation- and hypoxia-induced injury in two different neuronal cell models, the human neuroblastoma-derived SH-SY5Y cells and rat pheochromocytoma PC12 cells and in N9 microglial cells. In neuron-like cells, live/dead and apoptosis assays were performed in hypoxia conditions from 2 to 48 h...
September 17, 2016: Journal of Cellular Physiology
Patrick Maurer, J Ignacio Cirac, Oriol Romero-Isart
We show that ultrashort pulses can be focused, in a particular instant, to a spot size given by the wavelength associated with its spectral width. For attosecond pulses this spot size is within the nanometer scale. Then we show that a two-level system can be left excited after interacting with an ultrashort pulse whose spectral width is larger than the transition frequency, and that the excitation probability depends not on the field amplitude but on the field intensity. The latter makes the excitation profile have the same spot size as the ultrashort pulse...
September 2, 2016: Physical Review Letters
Vitalij Novickij, Audrius Grainys, Eglė Lastauskienė, Rūta Kananavičiūtė, Dovilė Pamedytytė, Lilija Kalėdienė, Jurij Novickij, Damijan Miklavčič
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical...
2016: Scientific Reports
Haixia Xu, Jie Zhang, Yutian Lei, Zhongyu Han, Dongming Rong, Qiang Yu, Ming Zhao, Jing Tian
Low frequency pulsed electromagnetic field (PEMF) has been shown to affect the activity of various cell types and promote them proliferation. However, its effect on skeletal muscle cells remains to be determined. In our study, we confirmed that PEMF (100 Hz, 1 mT) could promote C2C12 myoblasts proliferation by using Cell Counting Kit-8 (CCK-8) and 5-Ethynyl-2'-deoxyuridine (EdU) assays, yet hardly any distinction was found in the rate of cell apoptosis between PEMF and control groups by flow cytometry (Annexin V-FITC/PI double staining method)...
October 7, 2016: Biochemical and Biophysical Research Communications
Yan-Fang Xie, Wen-Gui Shi, Jian Zhou, Yu-Hai Gao, Shao-Feng Li, Qing-Qing Fang, Ming-Gang Wang, Hui-Ping Ma, Ju-Fang Wang, Cory J Xian, Ke-Ming Chen
Pulsed electromagnetic fields (PEMFs) have been considered as a potential candidate for the prevention and treatment of osteoporosis, however, the mechanism of its action is still elusive. We have previously reported that 50Hz 0.6mT PEMFs stimulate osteoblastic differentiation and mineralization in a primary cilium- dependent manner, but did not know the reason. In the current study, we found that the PEMFs promoted osteogenic differentiation and maturation of rat calvarial osteoblasts (ROBs) by activating bone morphogenetic protein BMP-Smad1/5/8 signaling on the condition that primary cilia were normal...
September 10, 2016: Bone
Sinan Fang, Heping Pan, Ting Du, Ahmed Amara Konaté, Chengxiang Deng, Zhen Qin, Bo Guo, Ling Peng, Huolin Ma, Gang Li, Feng Zhou
This study applied the finite-difference time-domain (FDTD) method to forward modeling of the low-frequency crosswell electromagnetic (EM) method. Specifically, we implemented impulse sources and convolutional perfectly matched layer (CPML). In the process to strengthen CPML, we observed that some dispersion was induced by the real stretch κ, together with an angular variation of the phase velocity of the transverse electric plane wave; the conclusion was that this dispersion was positively related to the real stretch and was little affected by grid interval...
2016: Scientific Reports
José I Padovani, Stefanie S Jeffrey, Roger T Howe
Droplet actuation is an essential mechanism for droplet-based microfluidic systems. On-demand electromagnetic actuation is used in a ferrofluid-based microfluidic system for water droplet displacement. Electropermanent magnets (EPMs) are used to induce 50 mT magnetic fields in a ferrofluid filled microchannel with gradients up to 6.4 × 10(4) kA/m(2). Short 50 µs current pulses activate the electropermanent magnets and generate negative magnetophoretic forces that range from 10 to 70 nN on 40 to 80 µm water-in-ferrofluid droplets...
June 2016: Technology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"