Read by QxMD icon Read


Mohan Paudel, Sara Javanparast, Gouranga Dasvarma, Lareen Newman
OBJECTIVE AND THE CONTEXT: This paper examines the beliefs and experiences of women and their families in remote mountain villages of Nepal about perinatal sickness and death and considers the implications of these beliefs for future healthcare provision. METHODS: Two mountain villages were chosen for this qualitative study to provide diversity of context within a highly disadvantaged region. Individual in-depth interviews were conducted with 42 women of childbearing age and their family members, 15 health service providers, and 5 stakeholders...
2018: PloS One
Qingfei Zeng, Erik Jeppesen, Xiaohong Gu, Zhigang Mao, Huihui Chen
The spatial-temporal distribution of polycyclic aromatic hydrocarbons (PAHs), their source, and potential health risks were determined in overlying water and surface sediments from Chinese Lake Guchenghu, adjacent commercial mitten crab ponds and the connected Wushen Canal to assess the contamination profile of the area. The total PAHs concentrations in sediment and water were 86.7-1790 ng g-1 dry weight (dw) and 184-365 ng L-1 in summer and 184-3140 ng g-1 dw and 410-1160 ng L-1 in winter. Two- and 3-ring PAHs were the predominant compounds in water, while PAHs with 4-6 rings dominated in the sediment at both upstream and downstream sites...
March 6, 2018: Chemosphere
Pouyan Ebrahimi, Javier Vilcáez
This research aimed to elucidate the effect of brine salinity and guar gum on the sorption and transport of Ba in dolomite rocks collected from the Arbuckle formation in Oklahoma, USA. Guar gum represents the most important organic additive used in viscosified fracturing fluids, and Ba constitutes the most common and abundant heavy metal found in unconventional oil and gas (UOG) wastewater. Batch experiments conducted using powdered dolomite rocks (500-600 μm particle size) revealed that at brine salinities of UOG wastewater, chloro-complexation reactions between Ba and Cl ions and pH changes that results from dolomite dissolution are the controlling factors of Ba sorption on dolomite...
March 12, 2018: Journal of Environmental Management
Núria Folguera-Blasco, Elisabet Cuyàs, Javier A Menéndez, Tomás Alarcón
Understanding the control of epigenetic regulation is key to explain and modify the aging process. Because histone-modifying enzymes are sensitive to shifts in availability of cofactors (e.g. metabolites), cellular epigenetic states may be tied to changing conditions associated with cofactor variability. The aim of this study is to analyse the relationships between cofactor fluctuations, epigenetic landscapes, and cell state transitions. Using Approximate Bayesian Computation, we generate an ensemble of epigenetic regulation (ER) systems whose heterogeneity reflects variability in cofactor pools used by histone modifiers...
March 15, 2018: PLoS Computational Biology
David B Medeiros, Leonardo Perez de Souza, Werner C Antunes, Wagner L Araújo, Danilo M Daloso, Alisdair R Fernie
Sucrose has long been thought to play an osmolytic role in stomatal opening. However, recent evidence supports the idea that the role of sucrose in this process is primarily energetic. Here we used a combination of stomatal aperture assays coupled with kinetic [U-13 C]-sucrose isotope labelling experiments to confirm that sucrose is degraded during light-induced stomatal opening and to define the fate of the C released from sucrose breakdown. We additionally show that addition of sucrose in the medium did not enhance light-induced stomatal opening...
March 15, 2018: Plant Journal: for Cell and Molecular Biology
Bingbo Zhang, Wei Yan, Yanjing Zhu, Weitao Yang, Wenjun Le, Bingdi Chen, Rongrong Zhu, Liming Cheng
Patients are increasingly being diagnosed with neuropathic diseases, but are rarely cured because of the loss of neurons in damaged tissues. This situation creates an urgent clinical need to develop alternative treatment strategies for effective repair and regeneration of injured or diseased tissues. Neural stem cells (NSCs), highly pluripotent cells with the ability of self-renewal and potential for multidirectional differentiation, provide a promising solution to meet this demand. However, some serious challenges remaining to be addressed are the regulation of implanted NSCs, tracking their fate, monitoring their interaction with and responsiveness to the tissue environment, and evaluating their treatment efficacy...
March 15, 2018: Advanced Materials
Congyu Wu, Yajing Shen, Mengwei Chen, Kun Wang, Yongyong Li, Yu Cheng
Remote control of cells and the regulation of cell events at the molecular level are of great interest in the biomedical field. In addition to chemical compounds and genes, mechanical forces play a pivotal role in regulating cell fate, which have prompted the rapid growth of mechanobiology. From a perspective of nanotechnology, magnetic nanomaterials (MNs) are an appealing option for mechanotransduction due to their capabilities in spatiotemporal manipulation of mechanical forces via the magnetic field. As a newly developed paradigm, magneto-mechanotransduction is harnessed to physically regulate cell fate for biomedical applications...
March 15, 2018: Advanced Materials
M Di Liberto, A Recati, N Trivedi, I Carusotto, C Menotti
We study the low-energy excitations of the Bose-Hubbard model in the strongly interacting superfluid phase using a Gutzwiller approach. We extract the single-particle and single-hole excitation amplitudes for each mode and report emergent mode-dependent particle-hole symmetry on specific arc-shaped lines in the phase diagram connecting the well-known Lorentz-invariant limits of the Bose-Hubbard model. By tracking the in-phase particle-hole symmetric oscillations of the order parameter, we provide an answer to the long-standing question about the fate of the pure amplitude Higgs mode away from the integer-density critical point...
February 16, 2018: Physical Review Letters
Maria E Piroli, Ehsan Jabbarzadeh
Human stem cells hold significant potential for the treatment of various diseases. However, their use as a therapy is hampered because of limited understanding of the mechanisms by which they respond to environmental stimuli. Efforts to understand extracellular biophysical cues have demonstrated the critical roles of geometrical and mechanical signals in determining the fate of stem cells. The goal of this study was to explore the interplay between cell polarity and matrix stiffness in stem cell lineage specification...
March 14, 2018: Annals of Biomedical Engineering
Mikkel Brabrand, Daniel Pilsgaard Henriksen
IMPORTANCE: The CURB-65 score is widely implemented as a prediction tool for identifying patients with community-acquired pneumonia (cap) at increased risk of 30-day mortality. However, since most ingredients of CURB-65 are used as general prediction tools, it is likely that other prediction tools, e.g. the British National Early Warning Score (NEWS), could be as good as CURB-65 at predicting the fate of CAP patients. OBJECTIVE: To determine whether NEWS is better than CURB-65 at predicting 30-day mortality of CAP patients...
March 14, 2018: Lung
E Damm, D Bauch, T Krumpen, B Rabe, M Korhonen, E Vinogradova, C Uhlig
Methane sources and sinks in the Arctic are poorly quantified. In particular, methane emissions from the Arctic Ocean and the potential sink capacity are still under debate. In this context sea ice impact on and the intense cycling of methane between sea ice and Polar surface water (PSW) becomes pivotal. We report on methane super- and under-saturation in PSW in the Eurasian Basin (EB), strongly linked to sea ice-ocean interactions. In the southern EB under-saturation in PSW is caused by both inflow of warm Atlantic water and short-time contact with sea ice...
March 14, 2018: Scientific Reports
Hong Duan, Luis F de Navas, Fuqu Hu, Kailiang Sun, Yannis E Mavromatakis, Kayla Viets, Cyrus Zhou, Joshua Kavaler, Robert J Johnston, Andrew Tomlinson, Eric C Lai
Photoreceptors in the crystalline Drosophila eye are recruited by receptor tyrosine kinase (RTK)/Ras signaling, mediated by the Epidermal Growth Factor receptor (EGFR) and Sevenless receptor. Analyses of an allelic deletion series of the mir-279/996 locus, along with a panel of modified genomic rescue transgenes, show that normal Drosophila eye patterning depends on both miRNAs. Transcriptional reporter and activity sensor transgenes reveal expression and function of miR-279/996 in non-neural cells of the developing eye...
March 14, 2018: Development
Hitoshi Niwa
Tissue-specific transcription factors primarily act to define the phenotype of the cell. The power of a single transcription factor to alter cell fate is often minimal, as seen in gain-of-function analyses, but when multiple transcription factors cooperate synergistically it potentiates their ability to induce changes in cell fate. By contrast, transcription factor function is often dispensable in the maintenance of cell phenotype, as is evident in loss-of-function assays. Why does this phenomenon, commonly known as redundancy, occur? Here, I discuss the role that transcription factor networks play in collaboratively regulating stem cell fate and differentiation by providing multiple explanations for their functional redundancy...
March 14, 2018: Development
William B Driskell, James R Payne
During the Deepwater Horizon blowout, unprecedented volumes of dispersant were applied both on the surface and at depth. Application at depth was intended to disperse the oil into smaller microdroplets that would increase biodegradation and also reduce the volumes buoyantly rising to the surface, thereby reducing surface exposures, recovery efforts, and potential stranding. In forensically examining 5300 offshore water samples for the Natural Resource Damage Assessment (NRDA) effort, profiles of deep-plume oil droplets (from filtered water samples) were compared with those also containing dispersant indicators to reveal a previously hypothesized but undocumented, accelerated dissolution of the polycyclic aromatic hydrocarbons (PAH) in the plume samples...
March 11, 2018: Marine Pollution Bulletin
Darren A Cusanovich, James P Reddington, David A Garfield, Riza M Daza, Delasa Aghamirzaie, Raquel Marco-Ferreres, Hannah A Pliner, Lena Christiansen, Xiaojie Qiu, Frank J Steemers, Cole Trapnell, Jay Shendure, Eileen E M Furlong
Understanding how gene regulatory networks control the progressive restriction of cell fates is a long-standing challenge. Recent advances in measuring gene expression in single cells are providing new insights into lineage commitment. However, the regulatory events underlying these changes remain unclear. Here we investigate the dynamics of chromatin regulatory landscapes during embryogenesis at single-cell resolution. Using single-cell combinatorial indexing assay for transposase accessible chromatin with sequencing (sci-ATAC-seq), we profiled chromatin accessibility in over 20,000 single nuclei from fixed Drosophila melanogaster embryos spanning three landmark embryonic stages: 2-4 h after egg laying (predominantly stage 5 blastoderm nuclei), when each embryo comprises around 6,000 multipotent cells; 6-8 h after egg laying (predominantly stage 10-11), to capture a midpoint in embryonic development when major lineages in the mesoderm and ectoderm are specified; and 10-12 h after egg laying (predominantly stage 13), when each of the embryo's more than 20,000 cells are undergoing terminal differentiation...
March 14, 2018: Nature
John Russell, Emily Lodge, Cynthia Andoniadou
<br>As a central regulator of major physiological processes, the pituitary gland is a highly dynamic organ, capable of responding to hormonal demand and hypothalamic influence, through adapting secretion as well as remodelling cell numbers among its seven populations of differentiated cells. Stem cells of the pituitary have been shown to actively generate new cells during postnatal development but remain mostly quiescent during adulthood, where they persist as a long-lived population. Despite a significant body of research characterising attributes of anterior pituitary stem cells, the regulation of this population is poorly understood...
March 14, 2018: Neuroendocrinology
Vanessa Koehlé-Divo, Carole Cossu-Leguille, Sandrine Pain-Devin, Cécile Simonin, Carole Bertrand, Bénédicte Sohm, Catherine Mouneyrac, Simon Devin, Laure Giambérini
The rapid development of nanotechnology and the increased use of nanomaterials in products used in everyday life have raised the question of the potential release of nanoparticles into the aquatic environment. Their fate and effects in natural ecosystems are not currently well understood but harmful effects of nanoparticles have been demonstrated at low concentrations on some freshwater and marine species. Cerium dioxide nanoparticles (CeO2 NPs) are produced in large quantities and used in products in many different fields, such as automotives or optics...
February 27, 2018: Aquatic Toxicology
Christoph Ratzke, Jeff Gore
Microbes usually exist in communities consisting of myriad different but interacting species. These interactions are typically mediated through environmental modifications; microbes change the environment by taking up resources and excreting metabolites, which affects the growth of both themselves and also other microbes. We show here that the way microbes modify their environment and react to it sets the interactions within single-species populations and also between different species. A very common environmental modification is a change of the environmental pH...
March 14, 2018: PLoS Biology
Yuqing Dong, Guorui Jin, Yuan Hong, Hongyuan Zhu, Tianjian Lu, Feng Xu, Dan Bai, Min Lin
In vivo, cells are located in a dynamic, three-dimensional (3D) cell microenvironment, and various biomaterials have been used to engineer 3D cell microenvironments in vitro to study the effects of the cell microenvironment on the regulation of cell fate. However, conventional hydrogels can only mimic the static cell microenvironment without any synchronous regulations. Therefore, novel hydrogels that are capable of responding to specific stimuli (e.g., light, temperature, pH, and magnetic and electrical stimulations) have emerged as versatile platforms to precisely mimic the dynamic native 3D cell microenvironment...
March 14, 2018: ACS Applied Materials & Interfaces
Jie Li, Domenico Bullara, Xuewen Du, Hongjian He, Stavroula Sofou, Ioannis G Kevrekidis, Irving R Epstein, Bing Xu
Recent studies have demonstrated that enzyme-instructed self-assembly (EISA) in extra- or intracellular environments can serve as a multistep process for controlling cell fate. There is little knowledge, however, about the kinetics of EISA in the complex environments in or around cells. Here we design and synthesize three dipeptidic precursors (LD-1-SO3, DL-1-SO3, DD-1-SO3), consisting of diphenylalanine (L-Phe-D-Phe, D-Phe-L-Phe, D-Phe-D-Phe, respectively) as the backbone, which are capped by 2-(naphthalen-2-yl)acetic acid at the N-terminal and by 2-(4-(2-aminoethoxy)-4-oxobutanamido)ethane-1-sulfonic acid at the C- 2 terminal...
March 14, 2018: ACS Nano
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"