Read by QxMD icon Read

Neuron cytoskeleton

Mara Cavallin, Emilia K Bijlsma, Adrienne El Morjani, Sébastien Moutton, Els A J Peeters, Camille Maillard, Jean Michel Pedespan, Anne-Marie Guerrot, Valérie Drouin-Garaud, Christine Coubes, David Genevieve, Christine Bole-Feysot, Cecile Fourrage, Julie Steffann, Nadia Bahi-Buisson
Kinesins play a critical role in the organization and dynamics of the microtubule cytoskeleton, making them central players in neuronal proliferation, neuronal migration, and postmigrational development. Recently, KIF2A mutations were identified in cortical malformation syndromes associated with microcephaly. Here, we detected two de novo p.Ser317Asn and p.His321Pro mutations in KIF2A in two patients with lissencephaly and microcephaly. In parallel, we re-evaluated the two previously reported cases showing de novo mutations of the same residues...
October 17, 2016: Neurogenetics
Jairo A Diaz, Mauricio F Murillo, Jhonan A Mendoza, Ana M Barreto, Lina S Poveda, Lina K Sanchez, Laura C Poveda, Katherine T Mora
Emergent biological responses develop via unknown processes dependent on physical collision. In hypoxia, when the tissue architecture collapses but the geometric core is stable, actin cytoskeleton filament components emerge, revealing a hidden internal order that identifies how each molecule is reassembled into the original mold, using one common connection, i.e., a fractal self-similarity that guides the system from the beginning in reverse metamorphosis, with spontaneous self-assembly of past forms that mimics an embryoid phenotype...
2016: American Journal of Stem Cells
Zhenhai Li, Hyunjung Lee, Cheng Zhu
Cell-matrix adhesion complexes are multi-protein structures linking the extracellular matrix (ECM) to the cytoskeleton. They are essential to both cell motility and function by bidirectionally sensing and transmitting mechanical and biochemical stimulations. Several types of cell-matrix adhesions have been identified and they share many key molecular components, such as integrins and actin-integrin linkers. Mechanochemical coupling between ECM molecules and the actin cytoskeleton has been observed from the single cell to the single molecule level and from immune cells to neuronal cells...
October 6, 2016: Experimental Cell Research
Valentina Zamboni, Maria Armentano, Gabriella Sarò, Elisa Ciraolo, Alessandra Ghigo, Giulia Germena, Alessandro Umbach, Pamela Valnegri, Maria Passafaro, Valentina Carabelli, Daniela Gavello, Veronica Bianchi, Patrizia D'Adamo, Ivan de Curtis, Nadia El-Assawi, Alessandro Mauro, Lorenzo Priano, Nicola Ferri, Emilio Hirsch, Giorgio R Merlo
During brain development, the small GTPases Rac1/Rac3 play key roles in neuronal migration, neuritogenesis, synaptic formation and plasticity, via control of actin cytoskeleton dynamic. Their activity is positively and negatively regulated by GEFs and GAPs molecules, respectively. However their in vivo roles are poorly known. The ArhGAP15 gene, coding for a Rac-specific GAP protein, is expressed in both excitatory and inhibitory neurons of the adult hippocampus, and its loss results in the hyperactivation of Rac1/Rac3...
October 7, 2016: Scientific Reports
Sayeed Ahmad, Salman Akhtar, Qazi Mohammad Sajid Jamal, Syed Mohd Danish Rizvi, Mohammad A Kamal, M Kalim A Khan, Mohd Haris Siddiqui
AD is a progressive and irreversible neurodegenerative disease and the most common cause of dementia in the elderly population. Βeta- amyloid cascade formation along with several cytoskeleton abnormalities succeeding to the hyperphosphorylation of microtubule-associated tau protein in neurons leads to the elicitation of several neurotoxic incidents. As an outcome of these phenomena, steady growth of dementia in aged population is becoming ubiquitous in both developed and developing countries. Thus, the key aspiration is to endow with stable daily life functionality to the person suffering from dementia and to cut down or slower the symptoms of disease leading to disruptive behavior...
October 3, 2016: CNS & Neurological Disorders Drug Targets
M R Kapolowicz, L T Thompson
Tinnitus is a devastating auditory disorder impacting a growing number of people each year. The aims of the current experiment were to assess neuronal mechanisms involved in the initial plasticity after traumatic noise exposure that could contribute to the emergence of tinnitus and to test a potential pharmacological treatment to alter this early neural plasticity. Specifically, this study addressed rapid effects of acute noise trauma on amygdalo-hippocampal circuitry, characterizing biomarkers of both excitation and inhibition in these limbic regions, and compared them to expression of these same markers in primary auditory cortex shortly after acute noise trauma...
October 1, 2016: Hearing Research
David Albrecht, Christian M Winterflood, Mohsen Sadeghi, Thomas Tschager, Frank Noé, Helge Ewers
The axon initial segment (AIS) is enriched in specific adaptor, cytoskeletal, and transmembrane molecules. During AIS establishment, a membrane diffusion barrier is formed between the axonal and somatodendritic domains. Recently, an axonal periodic pattern of actin, spectrin, and ankyrin forming 190-nm-spaced, ring-like structures has been discovered. However, whether this structure is related to the diffusion barrier function is unclear. Here, we performed single-particle tracking time-course experiments on hippocampal neurons during AIS development...
October 10, 2016: Journal of Cell Biology
Alberta Palazzo, Olivier Bluteau, Kahia Messaoudi, Francesco Marangoni, Yunhua Chang, Sylvie Souquere, Gérard Pierron, Valérie Lapierre, Yi Zheng, William Vainchenker, Hana Raslova, Najet Debili
BACKGROUND: Cytoskeleton rearrangements are essential in platelet release. The RHO small GTPase family, as regulators of the actin cytoskeleton, plays an important function in proplatelet formation. In the neuronal system, CDC42 is involved in the axone formation, a process that combined elongation and branching as proplatelet formation. OBJECTIVE: To analyze the role of CDC42 and its effectors of the WASP family on proplatelet formation METHODS: Human MKs were obtained from CD34(+) cells...
September 29, 2016: Journal of Thrombosis and Haemostasis: JTH
T Guadagnoli, L Caltana, M Vacotto, M M Gironacci, A Brusco
The deleterious effects of ethanol (EtOH) on the brain have been widely described, but its effects on the neuronal cytoskeleton during differentiation have not yet been firmly established. In this context, our aim was to investigate the direct effect of EtOH on cortical neurons during the period of differentiation. Primary cultures of cortical neurons obtained from 1-day-old rats were exposed to EtOH after 7days of culture, and viability and morphology were analyzed at structural and ultrastructural levels after 24-h EtOH exposure...
September 24, 2016: Brain Research Bulletin
Pirathiv Kugathasan, Jessica Waller, Ligia Westrich, Aicha Abdourahman, Joseph A Tamm, Alan L Pehrson, Elena Dale, Maria Gulinello, Connie Sanchez, Yan Li
Neuroplasticity is fundamental for brain functions, abnormal changes of which are associated with mood disorders and cognitive impairment. Neuroplasticity can be affected by neuroactive medications and by aging. Vortioxetine, a multimodal antidepressant, has shown positive effects on cognitive functions in both pre-clinical and clinical studies. In rodent studies, vortioxetine increases glutamate neurotransmission, promotes dendritic branching and spine maturation, and elevates hippocampal expression of the activity-regulated cytoskeleton-associated protein (Arc/Arg3...
September 26, 2016: Journal of Psychopharmacology
Sylvia Tielens, Sandra Huysseune, Juliette D Godin, Alain Chariot, Brigitte Malgrange, Laurent Nguyen
The migration of cortical interneurons is a fundamental process for the establishment of cortical connectivity and its impairment underlies several neurological disorders. During development, these neurons are born in the ganglionic eminences and they migrate tangentially to populate the cortical layers. This process relies on various morphological changes that are driven by dynamic cytoskeleton remodelings. By coupling time lapse imaging with molecular analyses, we show that the Elongator complex controls cortical interneuron migration in mouse embryos by regulating nucleokinesis and branching dynamics...
October 2016: Cell Research
Paula Pierozan, Helena Biasibetti, Felipe Schmitz, Helena Ávila, Mariana M Parisi, Florencia Barbe-Tuana, Angela T S Wyse, Regina Pessoa-Pureur
QUIN is a glutamate agonist playing a role in the misregulation of the cytoskeleton, which is associated with neurodegeneration in rats. In this study, we focused on microglial activation, FGF2/Erk signaling, gap junctions (GJs), inflammatory parameters and redox imbalance acting on cytoskeletal dynamics of the in QUIN-treated neural cells of rat striatum. FGF-2/Erk signaling was not altered in QUIN-treated primary astrocytes or neurons, however cytoskeleton was disrupted. In co-cultured astrocytes and neurons, QUIN-activated FGF2/Erk signaling prevented the cytoskeleton from remodeling...
September 20, 2016: Biochimica et Biophysica Acta
Paula Pierozan, Helena Biasibetti, Felipe Schmitz, Helena Ávila, Carolina Gonçalves Fernandes, Regina Pessoa-Pureur, Angela T S Wyse
In the present work, we focused on mechanisms of methylmercury (MeHg) toxicity in primary astrocytes and neurons of rats. Cortical astrocytes and neurons exposed to 0.5-5 μM MeHg present a link among morphological alterations, glutathione (GSH) depletion, glutamate dyshomeostasis, and cell death. Disrupted neuronal cytoskeleton was assessed by decreased neurite length and neurite/neuron ratio. Astrocytes presented reorganization of actin and glial fibrillary acidic protein (GFAP) networks and reduced cytoplasmic area...
September 22, 2016: Molecular Neurobiology
Kensuke Ninomiya, Mutsuhito Ohno, Naoyuki Kataoka
Localization of mRNA in neuronal cells is a critical process for spatiotemporal regulation of gene expression. Cytoplasmic localization of mRNA is often conferred by transport elements in 3' untranslated region (UTR). Activity-regulated cytoskeleton-associated protein (arc) mRNA is one of the localizing mRNAs in neuronal cells, and its localization is mediated by dendritic targeting element (DTE). As arc mRNA has introns in its 3' UTR, it was thought that arc mRNA is a natural target of nonsense-mediated mRNA decay (NMD)...
September 23, 2016: Genes to Cells: Devoted to Molecular & Cellular Mechanisms
Eszter C Szabó, Rita Manguinhas, Rosalina Fonseca
Persistent forms of plasticity, such as long-term depression (LTD), are dependent on the interplay between activity-dependent synaptic tags and the capture of plasticity-related proteins. We propose that the synaptic tag represents a structural alteration that turns synapses permissive to change. We found that modulation of actin dynamics has different roles in the induction and maintenance of LTD. Inhibition of either actin depolymerisation or polymerization blocks LTD induction whereas only the inhibition of actin depolymerisation blocks LTD maintenance...
2016: Scientific Reports
Shuting Xia, Zikai Zhou, Zhengping Jia
The Rho family small GTPases and their effectors, including PAKs, are extensively studied in the context of the actin cytoskeleton, excitatory synaptic function, spine morphology and memory formation. However, their roles in inhibitory synaptic function remain poorly understood. We have recently shown that PAK1 is a potent regulator of GABAergic synaptic transmission. Thus, disruption of PAK1 leads to significant impairments in inhibitory postsynaptic currents which are manifested as reduced GABA presynaptic releases...
September 20, 2016: Small GTPases
Joana Nogueira-Rodrigues, Pedro Brites, Mónica Mendes Sousa
In Krabbe's disease (KD), demyelination and myelin-independent axonal and neuronal defects contribute to the severe neuropathology. The toxic substrate that accumulates in this disease, psychosine, induces alterations in membrane lipid rafts with downstream consequences to cellular signaling pathways that include impaired protein kinase C, ERK, and AKT-glycogen synthase kinase-3β (GSK3β) activation. In addition to impaired recruitment of signaling proteins to lipid rafts, endocytosis and axonal transport are affected in KD...
November 2016: Journal of Neuroscience Research
Miao He, Yuetong Ding, Chen Chu, Jing Tang, Qi Xiao, Zhen-Ge Luo
Remodeling of cytoskeleton structures, such as microtubule assembly, is believed to be crucial for growth cone initiation and regrowth of injured axons. Autophagy plays important roles in maintaining cellular homoeostasis, and its dysfunction causes neuronal degeneration. The role of autophagy in axon regeneration after injury remains speculative. Here we demonstrate a role of autophagy in regulating microtubule dynamics and axon regeneration. We found that autophagy induction promoted neurite outgrowth, attenuated the inhibitory effects of nonpermissive substrate myelin, and decreased the formation of retraction bulbs following axonal injury in cultured cortical neurons...
October 4, 2016: Proceedings of the National Academy of Sciences of the United States of America
Weiwei Wang, Ellen Townes-Anderson
The structural plasticity of synaptic terminals contributes to normal nervous system function but also to neural degeneration, in the form of terminal retraction, and regeneration, due to process growth. Synaptic morphological change is mediated through the actin cytoskeleton, which is enriched in axonal and dendritic terminals. Whereas the three RhoGTPases, RhoA, Cdc42 and Rac, function as upstream signaling nodes sensitive to extracellular stimuli, LIMK-cofilin activity serves as a common downstream effector to up-regulate actin turnover, which is necessary for both polymerization and depolymerization...
July 2016: Neural Regeneration Research
Inna V Nechipurenko, Anique Olivier-Mason, Anna Kazatskaya, Julie Kennedy, Ian G McLachlan, Maxwell G Heiman, Oliver E Blacque, Piali Sengupta
Primary cilia are ubiquitous sensory organelles that mediate diverse signaling pathways. Cilia position on the cell surface is determined by the location of the basal body (BB) that templates the cilium. The mechanisms that regulate BB positioning in the context of ciliogenesis are largely unknown. Here we show that the conserved signaling and scaffolding protein Girdin localizes to the proximal regions of centrioles and regulates BB positioning and ciliogenesis in Caenorhabditis elegans sensory neurons and human RPE-1 cells...
September 12, 2016: Developmental Cell
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"