keyword
MENU ▼
Read by QxMD icon Read
search

Drosophila egfr

keyword
https://www.readbyqxmd.com/read/28916802/local-juvenile-hormone-activity-regulates-gut-homeostasis-and-tumor-growth-in-adult-drosophila
#1
M M Rahman, X Franch-Marro, J L Maestro, D Martin, A Casali
Hormones play essential roles during development and maintaining homeostasis in adult organisms, regulating a plethora of biological processes. Generally, hormones are secreted by glands and perform a systemic action. Here we show that Juvenile Hormones (JHs), insect sesquiterpenoids synthesized by the corpora allata, are also synthesized by the adult Drosophila gut. This local, gut specific JH activity, is synthesized by and acts on the intestinal stem cell and enteroblast populations, regulating their survival and cellular growth through the JH receptors Gce/Met and the coactivator Tai...
September 15, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28877471/kif5b-ret-oncoprotein-signals-through-a-multi-kinase-signaling-hub
#2
Tirtha Kamal Das, Ross Leigh Cagan
Gene fusions are increasingly recognized as important cancer drivers. The KIF5B-RET gene has been identified as a primary driver in a subset of lung adenocarcinomas. Targeting human KIF5B-RET to epithelia in Drosophila directed multiple aspects of transformation, including hyperproliferation, epithelial-to-mesenchymal transition, invasion, and extension of striking invadopodia-like processes. The KIF5B-RET-transformed human bronchial cell line showed similar aspects of transformation, including invadopodia-like processes...
September 5, 2017: Cell Reports
https://www.readbyqxmd.com/read/28847000/feedback-regulation-of-steady-state-epithelial-turnover-and-organ-size
#3
Jackson Liang, Shruthi Balachandra, Sang Ngo, Lucy Erin O'Brien
Epithelial organs undergo steady-state turnover throughout adult life, with old cells being continually replaced by the progeny of stem cell divisions. To avoid hyperplasia or atrophy, organ turnover demands strict equilibration of cell production and loss. However, the mechanistic basis of this equilibrium is unknown. Here we show that robustly precise turnover of the adult Drosophila intestine arises through a coupling mechanism in which enterocyte apoptosis breaks feedback inhibition of stem cell division...
August 31, 2017: Nature
https://www.readbyqxmd.com/read/28791646/studying-nonproliferative-roles-for-egfr-signaling-in-tissue-morphogenesis-using-dorsal-closure-of-the-drosophila-embryo
#4
Bruce Reed, Nicholas Harden
For several decades, genetic analysis in Drosophila has made important contributions to the understanding of signaling by Egfr. Egfr has been well characterized with regard to its oncogenic potential but is also being studied for its roles in organismal development. We have recently developed dorsal closure of the Drosophila embryo as a system for characterizing Egfr regulation of events that do not involve proliferation, as no cell divisions occur during this process. Dorsal closure is essentially a developmental wound healing event with parallels to vertebrate developmental epithelial fusions such as neural tube closure and palate fusion...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28791632/new-insights-from-drosophila-into-the-regulation-of-egfr-signaling
#5
Nicholas Harden
Genetic analysis of Egfr signaling in Drosophila has a long-standing track record of making important contributions to our understanding of the Egfr pathway. While the central Ras/MAPK pathway has long been well defined, there is much to learn with regard to its cross talk with other pathways and how it is regulated. A better understanding of the regulation of Egfr signaling is of particular interest with regard to the participation of misregulated Egfr signaling in tumorigenesis. Recent studies in the fly have led to some surprising results, identifying regulators of Egfr acting in unexpected ways...
2017: Methods in Molecular Biology
https://www.readbyqxmd.com/read/28754838/the-chromatin-remodeling-bap-complex-limits-tumor-promoting-activity-of-the-hippo-pathway-effector-yki-to-prevent-neoplastic-transformation-in-drosophila-epithelia
#6
Shilin Song, Héctor Herranz, Stephen M Cohen
SWI/SNF chromatin remodeling complexes are mutated in many human cancers. In this report we make use of a Drosophila genetic model for epithelial tumor formation to explore the tumor suppressive role of SWI/SNF complex proteins. Members of the BAP complex exhibit tumor suppressor activity in tissue overexpressing the Yorkie (Yki) proto-oncogene, but not in tissue overexpressing EGFR. The BAP complex has been reported to serve as a Yki-binding cofactor to support Yki target expression. However, we observed that depletion of BAP leads to ectopic expression of Yki targets both autonomously and non-autonomously, suggesting additional indirect effects...
July 28, 2017: Disease Models & Mechanisms
https://www.readbyqxmd.com/read/28701658/drosophila-dock-family-protein-zizimin-involves-in-pigment-cell-differentiation-in-pupal-retinae
#7
Fumito Ozasa, Kazushige Morishita, Ngoc Anh Suong Dang, Seiji Miyata, Hideki Yoshida, Masamitsu Yamaguchi
The dedicator of cytokinesis (DOCK) family proteins are known as one of guanine nucleotide exchange factors (GEFs), that contribute to cellular signaling processes by activating small G proteins. Although mammalian Zizimin is known to be a GEF for Cdc42 of Rho family small GTPase, its role in vivo is not well understood. Here we studied in vivo function of Drosophila Zizimin (Ziz). Knockdown of Ziz in eye imaginal discs induced the rough eye phenotype accompanied with fusion of ommatidia, loss of bristles and loss of pigments...
July 13, 2017: Cell Structure and Function
https://www.readbyqxmd.com/read/28678789/egfr-controls-drosophila-tracheal-tube-elongation-by-intracellular-trafficking-regulation
#8
Ivette Olivares-Castiñeira, Marta Llimargas
Development is governed by a few conserved signalling pathways. Amongst them, the EGFR pathway is used reiteratively for organ and tissue formation, and when dysregulated can lead to cancer and metastasis. Given its relevance, identifying its downstream molecular machinery and understanding how it instructs cellular changes is crucial. Here we approach this issue in the respiratory system of Drosophila. We identify a new role for EGFR restricting the elongation of the tracheal Dorsal Trunk. We find that EGFR regulates the apical determinant Crb and the extracellular matrix regulator Serp, two factors previously known to control tube length...
July 2017: PLoS Genetics
https://www.readbyqxmd.com/read/28676676/identifying-pathways-modulating-sleep-duration-from-genomics-to-transcriptomics
#9
Karla V Allebrandt, Maris Teder-Laving, Paola Cusumano, Goar Frishman, Rosa Levandovski, Andreas Ruepp, Maria P L Hidalgo, Rodolfo Costa, Andres Metspalu, Till Roenneberg, Cristiano De Pittà
Recognizing that insights into the modulation of sleep duration can emerge by exploring the functional relationships among genes, we used this strategy to explore the genome-wide association results for this trait. We detected two major signalling pathways (ion channels and the ERBB signalling family of tyrosine kinases) that could be replicated across independent GWA studies meta-analyses. To investigate the significance of these pathways for sleep modulation, we performed transcriptome analyses of short sleeping flies' heads (knockdown for the ABCC9 gene homolog; dSur)...
July 4, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28669604/redox-homeostasis-plays-important-roles-in-the-maintenance-of-the-drosophila-testis-germline-stem-cells
#10
Sharon Wui Sing Tan, Qian Ying Lee, Belinda Shu Ee Wong, Yu Cai, Gyeong Hun Baeg
Oxidative stress influences stem cell behavior by promoting the differentiation, proliferation, or apoptosis of stem cells. Thus, characterizing the effects of reactive oxygen species (ROS) on stem cell behavior provides insights into the significance of redox homeostasis in stem cell-associated diseases and efficient stem cell expansion for cellular therapies. We utilized the Drosophila testis as an in vivo model to examine the effects of ROS on germline stem cell (GSC) maintenance. High levels of ROS induced by alteration in Keap1/Nrf2 activity decreased GSC number by promoting precocious GSC differentiation...
July 11, 2017: Stem Cell Reports
https://www.readbyqxmd.com/read/28628612/novel-interplay-between-jnk-and-egfr-signaling-in-drosophila-dorsal-closure
#11
Tatyana Kushnir, Sharon Mezuman, Shaked Bar-Cohen, Rotem Lange, Ze'ev Paroush, Aharon Helman
Dorsal closure (DC) is a developmental process in which two contralateral epithelial sheets migrate to seal a large hole in the dorsal ectoderm of the Drosophila embryo. Two signaling pathways act sequentially to orchestrate this dynamic morphogenetic process. First, c-Jun N-terminal kinase (JNK) signaling activity in the dorsal-most leading edge (LE) cells of the epidermis induces expression of decapentaplegic (dpp). Second, Dpp, a secreted TGF-β homolog, triggers cell shape changes in the adjacent, ventrally located lateral epidermis, that guide the morphogenetic movements and cell migration mandatory for DC...
June 2017: PLoS Genetics
https://www.readbyqxmd.com/read/28621415/building-functional-units-of-movement-generation-and-movement-sensation-in-the-embryo
#12
Peleg Hasson, Talila Volk, Adi Salzberg
The musculoskeletal and proprioceptive sensory systems exhibit intricate crosstalk between force generation, force sensation and force transmission, all of which are critical for coordinated animal locomotion. Recent developmental studies of the musculoskeletal and proprioceptive units of the invertebrate Drosophila embryo, have revealed several common molecular and structural principles mediating the formation of each of these systems. These common principles, as well as the differences between the developmental programs of the two systems, are discussed...
2017: International Journal of Developmental Biology
https://www.readbyqxmd.com/read/28619822/cop9-signalosome-subunits-protect-capicua-from-mapk-dependent-and-independent-mechanisms-of-degradation
#13
Annabelle Suisse, DanQing He, Kevin Legent, Jessica E Treisman
The COP9 signalosome removes Nedd8 modifications from the Cullin subunits of ubiquitin ligase complexes, reducing their activity. Here, we show that mutations in the Drosophila COP9 signalosome subunit 1b (CSN1b) gene increase the activity of ubiquitin ligases that contain Cullin 1. Analysis of CSN1b mutant phenotypes revealed a requirement for the COP9 signalosome to prevent ectopic expression of Epidermal growth factor receptor (EGFR) target genes. It does so by protecting Capicua, a transcriptional repressor of EGFR target genes, from EGFR pathway-dependent ubiquitylation by a Cullin 1/SKP1-related A/Archipelago E3 ligase and subsequent proteasomal degradation...
July 15, 2017: Development
https://www.readbyqxmd.com/read/28598558/conserved-signaling-mechanisms-in-drosophila-heart-development
#14
REVIEW
Shaad M Ahmad
Signal transduction through multiple distinct pathways regulates and orchestrates the numerous biological processes comprising heart development. This review outlines the roles of the FGFR, EGFR, Wnt, BMP, Notch, Hedgehog, Slit/Robo, and other signaling pathways during four sequential phases of Drosophila cardiogenesis-mesoderm migration, cardiac mesoderm establishment, differentiation of the cardiac mesoderm into distinct cardiac cell types, and morphogenesis of the heart and its lumen based on the proper positioning and cell shape changes of these differentiated cardiac cells-and illustrates how these same cardiogenic roles are conserved in vertebrates...
June 9, 2017: Developmental Dynamics: An Official Publication of the American Association of Anatomists
https://www.readbyqxmd.com/read/28559239/escort-cells-generate-a-dynamic-compartment-for-germline-stem-cell-differentiation-via-combined-stat-and-erk-signalling
#15
Torsten U Banisch, Iris Maimon, Tali Dadosh, Lilach Gilboa
Two different compartments support germline stem cell (GSC) self-renewal and their timely differentiation: the classical niche provides maintenance cues, while a differentiation compartment, formed by somatic escort cells (ECs), is required for proper GSC differentiation. ECs extend long protrusions that invade between tightly packed germ cells, and alternate between encapsulating and releasing them. How ECs achieve this dynamic balance has not been resolved. By combining live imaging and genetic analyses in Drosophila, we have characterised EC shapes and their dynamic changes...
June 1, 2017: Development
https://www.readbyqxmd.com/read/28544778/differential-regulation-of-protein-tyrosine-kinase-signalling-by-dock-and-the-ptp61f-variants
#16
Lee F Willoughby, Jan Manent, Kirsten Allan, Han Lee, Marta Portela, Florian Wiede, Coral Warr, Tzu-Ching Meng, Tony Tiganis, Helena E Richardson
Tyrosine phosphorylation-dependent signalling is coordinated by the opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). There is a growing list of adaptor proteins that interact with PTPs and facilitate the dephosphorylation of substrates. The extent to which any given adaptor confers selectivity for any given substrate in vivo remains unclear. Here we have taken advantage of Drosophila melanogaster as a model organism to explore the influence of the SH3/SH2 adaptor protein Dock on the abilities of the membrane (PTP61Fm)- and nuclear (PTP61Fn)-targeted variants of PTP61F (the Drosophila othologue of the mammalian enzymes PTP1B and TCPTP respectively) to repress PTK signalling pathways in vivo...
May 23, 2017: FEBS Journal
https://www.readbyqxmd.com/read/28485389/egfr-dependent-tor-independent-endocycles-support-drosophila-gut-epithelial-regeneration
#17
Jinyi Xiang, Jennifer Bandura, Peng Zhang, Yinhua Jin, Hanna Reuter, Bruce A Edgar
Following gut epithelial damage, epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) signalling triggers Drosophila intestinal stem cells to produce enteroblasts (EBs) and enterocytes (ECs) that regenerate the gut. As EBs differentiate into ECs, they become postmitotic, but undergo extensive growth and DNA endoreplication. Here we report that EGFR/RAS/MAPK signalling is required and sufficient to drive damage-induced EB/EC growth. Endoreplication occurs exclusively in EBs and newborn ECs that inherit EGFR and active MAPK from fast-dividing progenitors...
May 9, 2017: Nature Communications
https://www.readbyqxmd.com/read/28467418/a-kcnc3-mutation-causes-a-neurodevelopmental-non-progressive-sca13-subtype-associated-with-dominant-negative-effects-and-aberrant-egfr-trafficking
#18
Swati Khare, Jerelyn A Nick, Yalan Zhang, Kira Galeano, Brittany Butler, Habibeh Khoshbouei, Sruti Rayaprolu, Tyisha Hathorn, Laura P W Ranum, Lisa Smithson, Todd E Golde, Martin Paucar, Richard Morse, Michael Raff, Julie Simon, Magnus Nordenskjöld, Karin Wirdefeldt, Diego E Rincon-Limas, Jada Lewis, Leonard K Kaczmarek, Pedro Fernandez-Funez, Harry S Nick, Michael F Waters
The autosomal dominant spinocerebellar ataxias (SCAs) are a diverse group of neurological disorders anchored by the phenotypes of motor incoordination and cerebellar atrophy. Disease heterogeneity is appreciated through varying comorbidities: dysarthria, dysphagia, oculomotor and/or retinal abnormalities, motor neuron pathology, epilepsy, cognitive impairment, autonomic dysfunction, and psychiatric manifestations. Our study focuses on SCA13, which is caused by several allelic variants in the voltage-gated potassium channel KCNC3 (Kv3...
2017: PloS One
https://www.readbyqxmd.com/read/28444830/gene-expression-reveals-evidence-for-egfr-dependent-proximal-distal-limb-patterning-in-a-myriapod
#19
Ralf Janssen
Evolution of segmented limbs is one of the key innovations of Arthropoda, allowing development of functionally specific specialized head and trunk appendages, a major factor behind their unmatched evolutionary success. Proximodistal limb patterning is controlled by two regulatory networks in the vinegar fly Drosophila melanogaster, and other insects. The first is represented by the function of the morphogens Wingless (Wg) and Decapentaplegic (Dpp); the second by the EGFR-signaling cascade. While the role of Wg and Dpp has been studied in a wide range of arthropods representing all main branches, that is, Pancrustacea (= Hexapoda + Crustacea), Myriapoda and Chelicerata, investigation of the potential role of EGFR-signaling is restricted to insects (Hexapoda)...
May 2017: Evolution & Development
https://www.readbyqxmd.com/read/28428262/uncoupling-neurogenic-gene-networks-in-the-drosophila-embryo
#20
William A Rogers, Yogesh Goyal, Kei Yamaya, Stanislav Y Shvartsman, Michael S Levine
The EGF signaling pathway specifies neuronal identities in the Drosophila embryo by regulating developmental patterning genes such as intermediate neuroblasts defective (ind). EGFR is activated in the ventral midline and neurogenic ectoderm by the Spitz ligand, which is processed by the Rhomboid protease. CRISPR/Cas9 was used to delete defined rhomboid enhancers mediating expression at each site of Spitz processing. Surprisingly, the neurogenic ectoderm, not the ventral midline, was found to be the dominant source of EGF patterning activity...
April 1, 2017: Genes & Development
keyword
keyword
62080
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"