Read by QxMD icon Read

Python microbiome

Gregory Ditzler, J Calvin Morrison, Yemin Lan, Gail L Rosen
BACKGROUND: Some of the current software tools for comparative metagenomics provide ecologists with the ability to investigate and explore bacterial communities using α- & β-diversity. Feature subset selection--a sub-field of machine learning--can also provide a unique insight into the differences between metagenomic or 16S phenotypes. In particular, feature subset selection methods can obtain the operational taxonomic units (OTUs), or functional features, that have a high-level of influence on the condition being studied...
2015: BMC Bioinformatics
Sultan Imangaliyev, Bart Keijser, Wim Crielaard, Evgeni Tsivtsivadze
We use Human Microbiome Project (HMP) cohort (Peterson et al., 2009) to infer personalized oral microbial networks of healthy individuals. To determine clustering of individuals with similar microbial profiles, co-regularized spectral clustering algorithm is applied to the dataset. For each cluster we discovered, we compute co-occurrence relationships among the microbial species that determine microbial network per cluster of individuals. The results of our study suggest that there are several differences in microbial interactions on personalized network level in healthy oral samples acquired from various niches...
July 15, 2015: Methods: a Companion to Methods in Enzymology
Jurgen F Nijkamp, Mihai Pop, Marcel J T Reinders, Dick de Ridder
MOTIVATION: Although many tools are available to study variation and its impact in single genomes, there is a lack of algorithms for finding such variation in metagenomes. This hampers the interpretation of metagenomics sequencing datasets, which are increasingly acquired in research on the (human) microbiome, in environmental studies and in the study of processes in the production of foods and beverages. Existing algorithms often depend on the use of reference genomes, which pose a problem when a metagenome of a priori unknown strain composition is studied...
November 15, 2013: Bioinformatics
Daniel McDonald, Jose C Clemente, Justin Kuczynski, Jai Ram Rideout, Jesse Stombaugh, Doug Wendel, Andreas Wilke, Susan Huse, John Hufnagle, Folker Meyer, Rob Knight, J Gregory Caporaso
BACKGROUND: We present the Biological Observation Matrix (BIOM, pronounced "biome") format: a JSON-based file format for representing arbitrary observation by sample contingency tables with associated sample and observation metadata. As the number of categories of comparative omics data types (collectively, the "ome-ome") grows rapidly, a general format to represent and archive this data will facilitate the interoperability of existing bioinformatics tools and future meta-analyses. FINDINGS: The BIOM file format is supported by an independent open-source software project (the biom-format project), which initially contains Python objects that support the use and manipulation of BIOM data in Python programs, and is intended to be an open development effort where developers can submit implementations of these objects in other programming languages...
2012: GigaScience
Alexander V Tyakht, Anna S Popenko, Maxim S Belenikin, Ilya A Altukhov, Alexander V Pavlenko, Elena S Kostryukova, Oksana V Selezneva, Andrei K Larin, Irina Y Karpova, Dmitry G Alexeev
MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota...
2012: Source Code for Biology and Medicine
Jeffrey J Werner, Omry Koren, Philip Hugenholtz, Todd Z DeSantis, William A Walters, J Gregory Caporaso, Largus T Angenent, Rob Knight, Ruth E Ley
Taxonomic classification of the thousands-millions of 16S rRNA gene sequences generated in microbiome studies is often achieved using a naïve Bayesian classifier (for example, the Ribosomal Database Project II (RDP) classifier), due to favorable trade-offs among automation, speed and accuracy. The resulting classification depends on the reference sequences and taxonomic hierarchy used to train the model; although the influence of primer sets and classification algorithms have been explored in detail, the influence of training set has not been characterized...
January 2012: ISME Journal
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"