Read by QxMD icon Read

Interchromatin space

Adriana Esteves, Anja Knoll-Gellida, Lucia Canclini, Maria Cecilia Silvarrey, Michèle André, Patrick J Babin
Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa...
February 2016: Journal of Lipid Research
Petra Björk, Jan-Olov Persson, Lars Wieslander
Eukaryotic gene expression requires the ordered association of numerous factors with precursor messenger RNAs (premRNAs)/messenger RNAs (mRNAs) to achieve efficiency and regulation. Here, we use the Balbiani ring (BR) genes to demonstrate the temporal and spatial association of the exon junction complex (EJC) core with gene-specific endogenous premRNAs and mRNAs. The EJC core components bind cotranscriptionally to BR premRNAs during or very rapidly after splicing. The EJC core does not recruit the nonsense-mediated decay mediaters UPF2 and UPF3 until the BR messenger RNA protein complexes (mRNPs) enter the interchromatin...
October 12, 2015: Journal of Cell Biology
D S Bogoliubov
In this review, the data on the structure and composition of the perichromatin compartment, a special border area between the condensed chromatin and the interchromatin space of the cell nucleus, are discussed in the light of the concept of nuclear functions in complex nuclear architectonics. Morphological features, molecular composition and functions of main extrachromosomal structures of the perichromatin compartment, perichromatin fibrils (PFs) and perichromatin granules (PGs) including nuclear stress-bodies (nSBs) that are derivates of the PGs under heat shock, are presented...
2014: Tsitologiia
David J Weston, Richard A Russell, Elizabeth Batty, Kirsten Jensen, David A Stephens, Niall M Adams, Paul S Freemont
The nuclei of higher eukaryotic cells display compartmentalization and certain nuclear compartments have been shown to follow a degree of spatial organization. To date, the study of nuclear organization has often involved simple quantitative procedures that struggle with both the irregularity of the nuclear boundary and the problem of handling replicate images. Such studies typically focus on inter-object distance, rather than spatial location within the nucleus. The concern of this paper is the spatial preference of nuclear compartments, for which we have developed statistical tools to quantitatively study and explore nuclear organization...
March 6, 2015: Journal of the Royal Society, Interface
Irina Trofimova, Darya Popova, Elena Vasilevskaya, Alla Krasikova
BACKGROUND: Subtelomeres are located close to the ends of chromosomes and organized by tandemly repetitive sequences, duplicated copies of genes, pseudogenes and retrotransposons. Transcriptional activity of tandemly organized DNA at terminal chromosomal regions and the distribution of subtelomere-derived non-coding RNAs are poorly investigated. Here we aimed to analyze transcriptional activity of subtelomeric tandem repeat in somatic tissues and cultured cells of birds. We focused on tissue-specific differences of subtelomeric repeats transcription, structure of the resulting transcripts and the behavior of subtelomere-derived RNA during mitosis...
2014: Molecular Cytogenetics
Michael A Tycon, Matthew K Daddysman, Christopher J Fecko
Nearly all cellular processes are enacted by multi-subunit protein complexes, yet the assembly mechanism of most complexes is not well understood. The anthropomorphism "protein recruitment" that is used to describe the concerted binding of proteins to accomplish a specific function conceals significant uncertainty about the underlying physical phenomena and chemical interactions governing the formation of macromolecular complexes. We address this deficiency by investigating the diffusion dynamics of two RNA polymerase II subunits, Rpb3 and Rpb9, in regions of live Drosophila cell nuclei that are devoid of chromatin binding sites...
January 16, 2014: Journal of Physical Chemistry. B
Jonathan T Henderson, Garrett Shannon, Alexander I Veress, Corey P Neu
Nuclear structure and mechanics play a critical role in diverse cellular functions, such as organizing direct access of chromatin to transcriptional regulators. Here, we use a new, to our knowledge, hybrid method, based on microscopy and hyperelastic warping, to determine three-dimensional strain distributions inside the nuclei of single living cells embedded within their native extracellular matrix. During physiologically relevant mechanical loading to tissue samples, strain was transferred to individual nuclei, resulting in submicron distributions of displacements, with compressive and tensile strain patterns approaching a fivefold magnitude increase in some locations compared to tissue-scale stimuli...
November 19, 2013: Biophysical Journal
Ka-Wing Fong, Yujing Li, Wenqi Wang, Wenbin Ma, Kunpeng Li, Robert Z Qi, Dan Liu, Zhou Songyang, Junjie Chen
The nucleus is a unique organelle that contains essential genetic materials in chromosome territories. The interchromatin space is composed of nuclear subcompartments, which are defined by several distinctive nuclear bodies believed to be factories of DNA or RNA processing and sites of transcriptional and/or posttranscriptional regulation. In this paper, we performed a genome-wide microscopy-based screening for proteins that form nuclear foci and characterized their localizations using markers of known nuclear bodies...
October 14, 2013: Journal of Cell Biology
Daniel M Passon, Mihwa Lee, Archa H Fox, Charles S Bond
The paraspeckle component 1 (PSPC1) and non-POU-domain-containing octamer-binding protein (NONO) heterodimer is an essential structural component of paraspeckles, ribonucleoprotein bodies found in the interchromatin space of mammalian cell nuclei. PSPC1 and NONO both belong to the Drosophila behaviour and human splicing (DBHS) protein family, which has been implicated in many aspects of RNA processing. A heterodimer of the core DBHS conserved region of PSPC1 and NONO comprising two tandemly arranged RNA-recognition motifs (RRMs), a NONA/paraspeckle (NOPS) domain and part of a predicted coiled-coil domain has been crystallized in space group C2, with unit-cell parameters a = 90...
October 1, 2011: Acta Crystallographica. Section F, Structural Biology and Crystallization Communications
Liuqing Yang, Chunru Lin, Wen Liu, Jie Zhang, Kenneth A Ohgi, Jonathan D Grinstein, Pieter C Dorrestein, Michael G Rosenfeld
Although eukaryotic nuclei contain distinct architectural structures associated with noncoding RNAs (ncRNAs), their potential relationship to regulated transcriptional programs remains poorly understood. Here, we report that methylation/demethylation of Polycomb 2 protein (Pc2) controls relocation of growth-control genes between Polycomb bodies (PcGs) and interchromatin granules (ICGs) in response to growth signals. This movement is the consequence of binding of methylated and unmethylated Pc2 to the ncRNAs TUG1 and MALAT1/NEAT2, located in PcGs and ICGs, respectively...
November 11, 2011: Cell
Jürgen Dieker, Victoria Iglesias-Guimarais, Marion Décossas, James Stevenin, Johan van der Vlag, Victor J Yuste, Sylviane Muller
The reorganization of nuclear structures is an important early feature of apoptosis and involves the activity of specific proteases and nucleases. Well-known is the condensation and fragmentation of chromatin; however, much less is understood about the mechanisms involved in the reorganization of structures from the interchromatin space, such as interchromatin granule clusters (IGCs). In this study, we show that the initial enlargement and rounding-up of IGCs correlate with a decrease in mRNA transcription and are caspase-independent, but involve protein phosphatases PP1/PP2A...
February 2012: Traffic
Y Markaki, M Gunkel, L Schermelleh, S Beichmanis, J Neumann, M Heidemann, H Leonhardt, D Eick, C Cremer, T Cremer
We studied the nuclear topography of RNA transcription and DNA replication in mammalian cell types with super-resolution fluorescence microscopy, which offers a resolution beyond the classical Abbe/Raleigh limit. Three-dimensional structured illumination microscopy (3D-SIM) demonstrated a network of channels and wider lacunas, called the interchromatin compartment (IC). The IC starts at nuclear pores and expands throughout the nuclear space. It is demarcated from the compact interior of higher-order chromatin domains (CDs) by a 100-200-nm thick layer of decondensed chromatin, termed the perichromatin region (PR)...
2010: Cold Spring Harbor Symposia on Quantitative Biology
A Slusarczyk, R Kamath, C Wang, D Anchel, C Pollock, M A Lewandowska, T Fitzpatrick, D P Bazett-Jones, S Huang
The perinucleolar compartment (PNC) is a subnuclear body that forms in cancer cells. In vivo analyses using human tumor tissues demonstrate a close correlation between PNC prevalence and disease progress in colorectal carcinoma, and a high PNC prevalence is associated with poor patient outcome. These findings are consistent with previous observations in breast cancer and cancer cell lines in vitro. The PNC is composed of thick strands that form a filamental meshwork often extending into the nucleolus. Although it appears to be electron dense as observed by transmission electron microscopy (TEM), the actual density of the structure imaged by electron spectroscopy is much lower, similar to that of the interchromatin space, and is lined with ribonucleoproteins (RNPs)...
2010: Cold Spring Harbor Symposia on Quantitative Biology
Petra Björk, Lars Wieslander
Nucleocytoplasmic export and biogenesis of mRNPs are closely coupled. At the gene, concomitant with synthesis of the pre-mRNA, the transcription machinery, hnRNP proteins, processing, quality control and export machineries cooperate to release processed and export competent mRNPs. After diffusion through the interchromatin space, the mRNPs are translocated through the nuclear pore complex and released into the cytoplasm. At the nuclear pore complex, defined compositional and conformational changes are triggered, but specific cotranscriptionally added components are retained in the mRNP and subsequently influence the cytoplasmic fate of the mRNP...
February 2011: Chromosoma
Janusz Niedojadlo, Cécile Perret-Vivancos, Karl-Henning Kalland, Dusan Cmarko, Thomas Cremer, Roel van Driel, Stanislav Fakan
The precise localization of transcribed DNA and resulting RNA is an important aspect of the functional architecture of the nucleus. To this end we have developed a novel in situ hybridization approach in combination with immunoelectron microscopy, using sense and anti-sense RNA probes that are derived from total cellular or cytoplasmic poly(A+) RNA. This new technology is much more gentle than classical in situ hybridization using DNA probes and shows excellent preservation of nuclear structure. Carried out on ultrathin sections of fixed and resin-embedded COS-7 cells, it revealed at high resolution the localization of the genes that code for the cellular mRNAs...
February 15, 2011: Experimental Cell Research
Archa H Fox, Angus I Lamond
Paraspeckles are a relatively new class of subnuclear bodies found in the interchromatin space of mammalian cells. They are RNA-protein structures formed by the interaction between a long nonprotein-coding RNA species, NEAT1/Men epsilon/beta, and members of the DBHS (Drosophila Behavior Human Splicing) family of proteins: P54NRB/NONO, PSPC1, and PSF/SFPQ. Paraspeckles are critical to the control of gene expression through the nuclear retention of RNA containing double-stranded RNA regions that have been subject to adenosine-to-inosine editing...
July 2010: Cold Spring Harbor Perspectives in Biology
Doris Illner, Roman Zinner, Violet Handtke, Jacques Rouquette, Hilmar Strickfaden, Christian Lanctôt, Marcus Conrad, Alexander Seiler, Axel Imhof, Thomas Cremer, Marion Cremer
Extensive changes of higher order chromatin arrangements can be observed during prometaphase, terminal cell differentiation and cellular senescence. Experimental systems where major reorganization of nuclear architecture can be induced under defined conditions, may help to better understand the functional implications of such changes. Here, we report on profound chromatin reorganization in fibroblast nuclei by chaetocin, a thiodioxopiperazine metabolite. Chaetocin induces strong condensation of chromosome territories separated by a wide interchromatin space largely void of DNA...
June 10, 2010: Experimental Cell Research
S Karasaki
The site of H(3)-uridine incorporation and the fate of labeled RNA during early embryo-genesis of the newt Triturus pyrrhogaster were studied with electron microscopic autoradiography. Isolated ectodermal and mesodermal tissues from the embryos were treated in H(3)-uridine for 3 hours and cultured in cold solution for various periods before fixation with OsO(4) and embedding in Epon. At the blastula stage, the only structural component of the nucleus seen in electron micrographs is a mass of chromatin fibrils...
September 1, 1965: Journal of Cell Biology
Yukihiro Higashiyama, Akinori Takahashi, Yasunori Fukumoto, Yuji Nakayama, Naoto Yamaguchi
In the interphase nuclei of cultured cells, chromatin is compacted and organized in higher-order structures through the condensation and decondensation processes. Chromosomes in the interphase nucleus are known to occupy distinct territories. The chromosome territory-interchromatin compartment model premises that the interchromatin compartment is separated from compact higher-order chromatin domains and expands in between these chromatin-organized territories. Chromatin in cultured cells is compacted under some conditions, such as the stress of heat shock and high osmolarity, and Src-mediated nuclear tyrosine phosphorylation...
July 2009: Cytotechnology
Jacques Rouquette, Christel Genoud, Gerardo H Vazquez-Nin, Bernd Kraus, Thomas Cremer, Stanislav Fakan
The nuclear architecture is considered an important contributor to genome function. Although the fine structural features of the cell nucleus have been investigated extensively by means of ultrastructural cytochemistry, mainly on ultrathin sections in two dimensions (2D), there was a of lack routine methods for a rapid reconstruction of three-dimensional (3D) distribution of different structural constituents throughout the nuclear volume. We have now filled this gap by the application of a novel approach associating a pre-embedding selective visualization of nuclear components with a method making use of ultramicrotomy combined with scanning electron microscopy (microtome serial block face scanning electron microscopy--'3View')...
2009: Chromosome Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"