Read by QxMD icon Read

Nucleated cells

Debasish Kumar Ghosh, Ajit Roy, Akash Ranjan
Protein aggregates result from altered structural conformations and they can perturb cellular homeostasis. Prevention mechanisms, which function against protein aggregation by modulatory processes, are diverse and redundant. In this study, we have characterized Huntingtin interacting protein K (HYPK) as a global aggregation-regulatory protein. We report the mechanistic details of how HYPK's aggregation-prone regions allow it to sense and prevent other toxic protein's aggregation by forming unique annular-shaped sequestration complexes...
February 16, 2018: Journal of Molecular Biology
Laís Pessanha de Carvalho, Edésio José Tenório de Melo
Toxoplasma gondii, the etiological agent of toxoplasmosis, infects nucleated cells and then resides and multiplies within a parasitophorous vacuole. For this purpose, the parasite secretes many virulence factors for the purpose of invading and subverting the host microbicidal defenses in order to facilitate its survival in the intracellular milieu. Essential metals are structural components of proteins and enzymes or cofactors of enzymatic reactions responsible for these parasitic survival mechanisms. However, an excess of non-essential or essential metals can lead to parasite death...
February 18, 2018: Parasitology Research
Qing Wen, Elizabeth I Tang, Nan Li, Dolores D Mruk, Will M Lee, Bruno Silvestrini, C Yan Cheng
The blood-testis barrier (BTB) is an important ultrastructure in the testis that supports meiosis and postmeiotic spermatid development since a delay in the establishment of a functional Sertoli cell barrier during postnatal development in rats or mice by 17-20 day postpartum (dpp) would lead to a delay of the first wave of meiosis. Furthermore, irreversible disruption of the BTB by toxicants also induces infertility in rodents. Herein, we summarize recent findings that BTB dynamics (i.e., disassembly, reassembly, and stabilization) are supported by the concerted efforts of the actin- and microtubule (MT)-based cytoskeletons...
2018: Methods in Molecular Biology
Pan Liu, Jiuhui Han, Xianwei Guo, Yoshikazu Ito, Chuchu Yang, Shoucong Ning, Takeshi Fujita, Akihiko Hirata, Mingwei Chen
Rechargeable non-aqueous lithium-oxygen batteries with a large theoretical capacity are emerging as a high-energy electrochemical device for sustainable energy strategy. Despite many efforts made to understand the fundamental Li-O 2 electrochemistry, the kinetic process of cathodic reactions, associated with the formation and decomposition of a solid Li 2 O 2 phase during charging and discharging, remains debate. Here we report direct visualization of the charge/discharge reactions on a gold cathode in a non-aqueous lithium-oxygen micro-battery using liquid-cell aberration-corrected scanning transmission electron microscopy (STEM) combining with synchronized electrochemical measurements...
February 16, 2018: Scientific Reports
Lucy X Chen, Cintli C Morales-Alcala, Natalia A Riobo-Del Galdo
The Hedgehog (Hh) receptor Patched1 (PTCH1) is a well-known tumor suppressor that in its active form represses Smoothened (SMO) activity, inhibits proliferation, and induces apoptosis. The cytoplasmic C-terminal domain (CTD) regulates PTCH1 turnover and nucleates a pro-apoptotic complex. In this study, it was mechanistically determined that Autophagy Related 10 (ATG101), essential for mammalian autophagy, physically interacts with the CTD of PTCH1 and connects it to the ULK complex, which stimulates the autophagy machinery in response to changes in nutrient availability...
February 16, 2018: Molecular Cancer Research: MCR
Vanessa Turinelli, Alessandra Gavazza
Objectives Cytological assessment of the bone marrow is an essential tool for understanding and investigating haematological abnormalities. Sometimes it represents the only way to reach a definitive diagnosis. The purpose of this study was to provide a general overview regarding the prevalence of feline bone marrow disorders encountered in a private European laboratory setting, to classify them and to assess the differential cell counts related to such disorders. Methods In total, 152 bone marrow samples were classified using cytological and numerical criteria...
February 1, 2018: Journal of Feline Medicine and Surgery
John Dou, Rebecca J Schmidt, Kelly S Benke, Craig Newschaffer, Irva Hertz-Picciotto, Lisa A Croen, Ana-Maria Iosif, Janine M LaSalle, M Daniele Fallin, Kelly M Bakulski
Cord blood DNA methylation is associated with numerous health outcomes and environmental exposures. Whole cord blood DNA reflects all nucleated blood cell types, while centrifuging whole blood separates red blood cells, generating a white blood cell buffy coat. Both sample types are used in DNA methylation studies. Cell types have unique methylation patterns and processing can impact cell distributions, which may influence comparability. We evaluated differences in cell composition and DNA methylation between cord blood buffy coat and whole cord blood samples...
February 16, 2018: Epigenetics: Official Journal of the DNA Methylation Society
Stefania Ketzetzi, John Russo, Daniel Bonn
Homogeneous crystal nucleation from a metastable hard-sphere colloidal liquid has been extensively studied in simulations and experiments. A 12 order of magnitude difference between simulated and experimental nucleation rates is observed, the origin of which remains a puzzle. Here, we experimentally study crystal nucleation at the single particle level in suspensions of hard-sphere-like colloids under the influence of sedimentation. We find that sedimentation significantly enhances the nucleation rate, but contrary to what was previously thought, this is not due to simple density fluctuations, as the nucleation barriers become independent of the local density in a sedimentating fluid...
February 14, 2018: Journal of Chemical Physics
Shu Yao Leong, Moé Yamada, Naoki Yanagisawa, Gohta Goshima
Stabilisation of minus ends of microtubules (MTs) is critical for organising MT networks in land plant cells, in which all MTs are nucleated independent of centrosomes. Recently, Arabidopsis SPIRAL2 (SPR2) protein was shown to localise to plus and minus ends of cortical MTs, and increase stability of both ends. Here, we report molecular and functional characterisation of SPR2 of the basal land plant, the moss Physcomitrella patens. In protonemal cells of P. patens, where non-cortical, endoplasmic MT network is organised, we observed SPR2 at minus ends, but not plus ends, of endoplasmic MTs and likely also of phragmoplast MTs...
February 15, 2018: Cell Structure and Function
Yi-Fei Guo, Qi-Chen Fang, Jun Xu, Fan-Xing Bu, Wei Zhang, Ming Hu, Ji-Sen Jiang
Mesoporous magnetic Prussian Blue (PB) particles are good condidates for theragnostic nanomedicine. However, there are lack of efficient methods for fabrication of such materials. Here, we reported the synthesis of the mesoporous yolk-shell Fe3O4@PB particles by one-pot coordination replication and etching. Time-dependent transmission electron microscopy illustrated that the PB crystals nucleated and grew on the surface of Fe3O4 spheres by coordination replication with the help of protons. The extra protons in the reaction medium further disassociated the Fe3O4 and PB, leading to mesoporous particles...
May 1, 2018: Journal of Nanoscience and Nanotechnology
Stephen J Terry, Federico Donà, Paul Osenberg, Jeremy G Carlton, Ulrike S Eggert
During cytokinesis, a cleavage furrow generated by actomyosin ring contraction is restructured into the midbody, a platform for the assembly of the abscission machinery that controls the final separation of daughter cells. The polymerization state of F-actin is important during assembly, ingression, disassembly, and closure of the contractile ring and for the cytoskeletal remodeling that accompanies midbody formation and progression to abscission. Actin filaments must be cleared from the abscission sites before the final cut can take place...
February 8, 2018: Proceedings of the National Academy of Sciences of the United States of America
Minjeong Kim, Myoung Gil Choi, Ho Won Ra, Seung Bin Park, Yong-Joo Kim, Kyubock Lee
The encapsulation of living cells is appealing for its various applications to cell-based sensors, bioreactors, biocatalysts, and bioenergy. In this work, we introduce the encapsulation of multiple microalgal cells in hollow polymer shells of rhombohedral shape by the following sequential processes: embedding of microalgae in CaCO₃ crystals; layer-by-layer (LbL) coating of polyelectrolytes; and removal of sacrificial crystals. The microcapsule size was controlled by the alteration of CaCO₃ crystal size, which is dependent on CaCl₂/Na₂CO₃ concentration...
February 13, 2018: Materials
Xiaojuan Su, Siyang Wang, Yongxu Huo, Chunlei Yang
Actin-related protein 2/3 complex subunit 4 (ARPC4) acts as an actin nucleator in actin cytoskeleton branching and contributes to cell migration. ARPC4 has previously been demonstrated to be abnormally expressed in various colorectal carcinoma cell lines, particularly SW620 cells. The present study explored the biological action and the possible mechanisms underlying the function of ARPC4 in the progression of carcinoma. The proliferation and migration of SW620 cells transfected with ARPC4-specific short interfering (si)RNAs were assessed using western blot, cell counting, flow cytometry and transwell assays...
March 2018: Oncology Letters
Eunho Cha, Mumukshu D Patel, Juhong Park, Jeongwoon Hwang, Vish Prasad, Kyeongjae Cho, Wonbong Choi
Among the candidates to replace Li-ion batteries, Li-S cells are an attractive option as their energy density is about five times higher (~2,600 Wh kg-1). The success of Li-S cells depends in large part on the utilization of metallic Li as anode material. Metallic lithium, however, is prone to grow parasitic dendrites and is highly reactive to several electrolytes; moreover, Li-S cells with metallic Li are also susceptible to polysulfides dissolution. Here, we show that ~10-nm-thick two-dimensional (2D) MoS2 can act as a protective layer for Li-metal anodes, greatly improving the performances of Li-S batteries...
February 12, 2018: Nature Nanotechnology
Qing Wen, Nan Li, Xiang Xiao, Wing-Yee Lui, Darren S Chu, Chris K C Wong, Qingquan Lian, Renshan Ge, Will M Lee, Bruno Silvestrini, C Yan Cheng
Germ cell differentiation during the epithelial cycle of spermatogenesis is accompanied by extensive remodeling at the Sertoli cell-cell and Sertoli cell-spermatid interface to accommodate the transport of preleptotene spermatocytes and developing spermatids across the blood-testis barrier (BTB) and the adluminal compartment of the seminiferous epithelium, respectively. The unique cell junction in the testis is the actin-rich ectoplasmic specialization (ES) designated basal ES at the Sertoli cell-cell interface, and the apical ES at the Sertoli-spermatid interface...
February 12, 2018: Cell Death & Disease
Yumin Huang, John Hale, Yaomei Wang, Wei Li, Shijie Zhang, Jieying Zhang, Huizhi Zhao, Xinhua Guo, Jing Liu, Hongxia Yan, Karina Yazdanbakhsh, Gang Huang, Christopher D Hillyer, Narla Mohandas, Lixiang Chen, Ling Sun, Xiuli An
BACKGROUND: SF3B1 is a core component of splicing machinery. Mutations in SF3B1 are frequently found in myelodysplastic syndromes (MDS), particularly in patients with refractory anemia with ringed sideroblasts (RARS), characterized by isolated anemia. SF3B1 mutations have been implicated in the pathophysiology of RARS; however, the physiological function of SF3B1 in erythropoiesis remains unknown. METHODS: shRNA-mediated approach was used to knockdown SF3B1 in human CD34+ cells...
February 12, 2018: Journal of Hematology & Oncology
A R G Gauthier, D L Whitehead, I R Tibbetts, B W Cribb, M B Bennett
This study investigated and compared the morphology of the electrosensory system of three species of benthic rays. Neotrygon trigonoides, Hemitrygon fluviorum and Maculabatis toshi inhabit similar habitats within Moreton Bay, Queensland, Australia. Like all elasmobranchs, they possess the ability to detect weak electrical fields using their ampullae of Lorenzini. Macroscopically, the ampullary organs of all three species are aggregated in three bilaterally paired clusters: the mandibular, hyoid and superficial ophthalmic clusters...
February 2018: Journal of Fish Biology
Tianxiang Nan, Jianguang Yang, Bing Chen
Tin was electrodeposited from chloride solutions using a membrane cell under ultrasonic waves. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CHR), and chronopotentiometry were applied to investigate the electrochemical mechanism of tin electrodeposition under ultrasonic field. Chronoamperometry curves showed that the initial process of tin electrodeposition followed the diffusion controlled three-dimensional nucleation and grain growth mechanism. The analysis of the cyclic voltammetry and linear sweep voltammetry diagrams showed that the application of ultrasound can change the tin membrane electro-deposition reaction from diffusion to electrochemical control, and the optimum parameters for tin electrodeposition were H+ concentration 3...
April 2018: Ultrasonics Sonochemistry
Mizuho Hanaki, Kazuma Murakami, Sumie Katayama, Ken-Ichi Akagi, Kazuhiro Irie
(R)-Apomorphine (1) has the potential to reduce the accumulation of amyloid β-protein (Aβ42), a causative agent of Alzheimer's disease (AD). Although the inhibition of Aβ42 aggregation by 1 is ascribable to the antioxidative effect of its phenol moiety, its inhibitory mechanism at the molecular level remains to be fully elucidated. LC-MS and UV analyses revealed that 1 is autoxidized during incubation to produce an unstable o-quinone form (2), which formed a Michael adduct with Lys 16 and 28 of Aβ42. A further autoxidized form of 1 (3) with o-quinone and phenanthrene moieties suppressed Aβ42 aggregation comparable to 1, whereas treating 1 with a reductant, tris(2-carboxyethyl)phosphine diminished its inhibitory activity...
February 2, 2018: Bioorganic & Medicinal Chemistry
Carlos E Cuervo-Lozano, Adolfo Soto-Domínguez, Odila Saucedo-Cárdenas, Roberto Montes-de-Oca-Luna, Sergio Alonso-Romero, María Del Consuelo Mancías-Guerra, Eduardo Álvarez-Lozano
Treatment of massive bone defects is one of the most difficult problems to solve in orthopedics. At present, there is no consensus on the best way to resolve these problems. The aim of our study was to evaluate the effect of a three-dimensional bioimplant over massive bone defects, and to analyse if it improves the speed and quality of integration in recipient bone compared to allograft treatment. Fifteen female lambs with massive bone defects, surgically created in their tibias, were randomly divided into three groups of five lambs each: Group I -treated with the bioimplant; Group 2 -treated with the bioimplant plus nucleated cells of autologous bone marrow; Group 3 -treated with a frozen allograft...
February 2018: Tissue & Cell
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"