Read by QxMD icon Read

selenium nanoparticle

Xiaona Zhai, Chunyue Zhang, Guanghua Zhao, Serge Stoll, Fazheng Ren, Xiaojing Leng
BACKGROUNDS: Selenium (Se) as one of the essential trace elements for human plays an important role in the oxidation reduction system. But the high toxicity of Se limits its application. In this case, the element Se with zero oxidation state (Se(0)) has captured our attention because of its low toxicity and excellent bioavailability. However, Se(0) is very unstable and easily changes into the inactive form. By now many efforts have been done to protect its stability. And this work was conducted to explore the antioxidant capacities of the stable Se(0) nanoparticles (SeNPs) stabilized using chitosan (CS) with different molecular weights (Mws) (CS-SeNPs)...
January 5, 2017: Journal of Nanobiotechnology
C E Rosenfeld, J A Kenyon, B R James, C M Santelli
Microbial processes are known to mediate selenium (Se) oxidation-reduction reactions, strongly influencing Se speciation, bioavailability, and transport throughout the environment. While these processes have commonly been studied in anaerobic bacteria, the role that aerobic fungi play in Se redox reactions could be important for Se-rich soil systems, dominated by microbial activity. We quantified fungal growth, aerobic Se(IV, VI) reduction, and Se immobilization and volatilization in the presence of six, metal-tolerant Ascomycete fungi...
January 2, 2017: Geobiology
Xiaonan Wang, Daoyong Zhang, Xiangliang Pan, Duu-Jong Lee, Fahad A Al-Misned, M Golam Mortuza, Geoffrey Michael Gadd
Selenium (Se) nanoparticles are often synthesized by anaerobes. However, anaerobic bacteria cannot be directly applied for bioremediation of contaminated top soil which is generally aerobic. In this study, a selenite-reducing bacterium, Citrobacter freundii Y9, demonstrated high selenite reducing power and produced elemental nano-selenium nanoparticles (nano-Se(0)) under both aerobic and anaerobic conditions. The biogenic nano-Se(0) converted 45.8-57.1% and 39.1-48.6% of elemental mercury (Hg(0)) in the contaminated soil to insoluble mercuric selenide (HgSe) under anaerobic and aerobic conditions, respectively...
December 5, 2016: Chemosphere
Joyabrata Mal, Wouter J Veneman, Y V Nancharaiah, Eric D van Hullebusch, Willie J G M Peijnenburg, Martina G Vijver, Piet N L Lens
Microbial reduction of selenium (Se) oxyanions to elemental Se is a promising technology for bioremediation and treatment of Se wastewaters. But a fraction of biogenic nano-Selenium (nano-Se(b)) formed in bioreactors remains suspended in the treated waters, thus entering the aquatic environment. The present study investigated the toxicity of nano-Se(b) formed by anaerobic granular sludge biofilms on zebrafish embryos in comparison with selenite and chemogenic nano-Se (nano-Se(c)). The nano-Se(b) formed by granular sludge biofilms showed a LC50 value of 1...
December 23, 2016: Nanotoxicology
M A El-Ghazaly, N Fadel, E Rashed, A El-Batal, S A Kenawy
Selenium (Se) has been reported to possess anti-inflammatory properties, but its bioavailability and toxicity are considerable limiting factors. The present study aimed to investigate the possible anti-inflammatory and analgesic effects of selenium nanoparticles (Nano-Se) on inflammation induced in irradiated rats. Paw volume and nociceptive threshold were measured in carrageenan-induced paw edema and hyperalgesia model. Leukocytic count, tumor necrosis factor-α (TNF-α), prostaglandin E2 (PGE2), thiobarbituric acid reactive substances (TBAR), and total nitrate/nitrite (NOx) were estimated in the exudate collected from 6 day old air pouch model...
October 12, 2016: Canadian Journal of Physiology and Pharmacology
Mahdi Shiri, Mona Navaei-Nigjeh, Maryam Baeeri, Mahban Rahimifard, Hossein Mahboudi, Ahmad Reza Shahverdi, Abbas Kebriaeezadeh, Mohammad Abdollahi
Diazinon (DZ) is an organophosphorus insecticide that acts as an acetylcholinesterase inhibitor. It is important to note that it can induce oxidative stress, lipid peroxidation, diabetic disorders, and cytotoxicity. Magnesium oxide (MgO) and selenium nanoparticles (Se NPs) showed promising protection against oxidative stress, lipid peroxidation, cytotoxicity, and diabetic disorders. Therefore, this study was conducted to explore the possible protective mechanisms of MgO and Se NPs against DZ-induced cytotoxicity in PaTu cell line...
2016: International Journal of Nanomedicine
Sara Shoeibi, Mohammad Mashreghi
Microorganisms are capable of synthesizing metal nanoparticles, and specifically Enterococcus faecalis bacteria were tested for its ability to synthesize selenium nanoparticles (Se-NPs) from sodium selenite. The biosynthesized Se-NPs were spherical in shape with the size range of 29-195nm. Also, the TEM microscopy showed the accumulation of nano-structures as extracellular deposits. The ability of the bacteria to tolerate high levels of toxic selenite was studied by changing with different concentrations of sodium selenite (0...
January 2017: Journal of Trace Elements in Medicine and Biology
Mohamed A Dkhil, Rafat Zrieq, Saleh Al-Quraishy, Ahmed E Abdel Moneim
We investigated the protective and antioxidative effects of selenium nanoparticles (SeNPs) in streptozotocin STZ-induced diabetic rats. STZ-diabetic rats were exposed daily to treatments with SeNPs and/or insulin and then the effect of these treatments on the parameters correlated to oxidative damage of the rat testes were assessed. Biochemical analysis revealed that SeNPs are able to ameliorate the reduction in the serum testosterone caused by STZ-induced diabetes. Furthermore, SeNPs could significantly decrease testicular tissue oxidative stress markers, namely lipid peroxidation and nitric oxide...
November 19, 2016: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Pallavee Srivastava, Meenal Kowshik
Selenium nanoparticles (SeNPs) with novel biological activities, cancer cell selectivity, and low toxicity towards normal cells have gained attention for chemo-therapeutic and chemo-preventive applications. These nanoparticles may be synthesized using micro-organisms, which is the green alternative of nanofabrication. Here we report the intracellular synthesis of SeNPs by the moderate halophilic bacterium, Idiomarina sp. PR58-8 using sodium selenite as the precursor. Characterization of SeNPs by XRD exhibited the characteristic Bragg's peak of hexagonal selenium with a crystallite domain size of 34nm...
December 2016: Enzyme and Microbial Technology
Yin-Hua Cui, Ling-Li Li, Nan-Qing Zhou, Jing-Hua Liu, Qing Huang, Hui-Juan Wang, Jie Tian, Han-Qing Yu
Nano-selenium has a great potential to be used in chemical, biological, medical and environmental fields. Biological methods for nano-selenium synthesis have attracted wide interests, because they can be operated at ambient temperature and pressure without complicated equipments. In this work, a protozoa, Tetrahymena thermophila (T. thermophila) SB210, was used to in vivo synthesize nano-selenium. The biosynthesized nano-selenium was characterized using transmission electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy...
December 2016: Enzyme and Microbial Technology
M Molanouri Shamsi, S Chekachak, S Soudi, L S Quinn, K Ranjbar, J Chenari, M H Yazdi, M Mahdavi
Cancer cachexia is characterized by inflammation, loss of skeletal muscle and adipose tissue mass, and functional impairment. Oxidative stress and inflammation are believed to regulate pathways controlling skeletal muscle wasting. The aim of this study was to determine the effects of aerobic interval training and the purported antioxidant treatment, selenium nanoparticle supplementation, on expression of IL-15 and inflammatory cytokines in 4T1 breast cancer-bearing mice with cachexia. Selenium nanoparticle supplementation accelerated cachexia symptoms in tumor-bearing mice, while exercise training prevented muscle wasting in tumor-bearing mice...
November 16, 2016: Cytokine
Roberto Avendaño, Nefertiti Chaves, Paola Fuentes, Ethel Sánchez, Jose I Jiménez, Max Chavarría
Selenium (Se) is an essential element for the cell that has multiple applications in medicine and technology; microorganisms play an important role in Se transformations in the environment. Here we report the previously unidentified ability of the soil bacterium Pseudomonas putida KT2440 to synthesize nanoparticles of elemental selenium (nano-Se) from selenite. Our results show that P. putida is able to reduce selenite aerobically, but not selenate, to nano-Se. Kinetic analysis indicates that, in LB medium supplemented with selenite (1 mM), reduction to nano-Se occurs at a rate of 0...
November 15, 2016: Scientific Reports
P Sowndarya, G Ramkumar, M S Shivakumar
Mosquitoes are major vectors for the transmission of many diseases like chikungunya, malaria, dengue, zika, etc. worldwide. In the present study, selenium nanoparticles (SeNPs) were synthesized from Clausena dentata and were tested for their larvicidal efficacy against the fourth-instar larvae of Anopheles stephensi, Aedes Aegypti, and Culex quinquefasciatus. The synthesized nanoparticles were characterized using UV-Vis spectroscopy, Fourier Transform Infrared Radiation (FTIR) spectroscopy, EDaX, and SEM. The results recorded from UV-Vis spectroscopy show the peak absorption spectrum at 420 nm...
November 10, 2016: Artificial Cells, Nanomedicine, and Biotechnology
Yifan Wang, Jianglin Wang, Hang Hao, Mingle Cai, Shiyao Wang, Jun Ma, Yan Li, Chuanbin Mao, Shengmin Zhang
Biocompatible tissue-borne crystalline nanoparticles releasing anticancer therapeutic inorganic elements are intriguing therapeutics holding the promise for both tissue repair and cancer therapy. However, how the therapeutic inorganic elements released from the lattice of such nanoparticles induce tumor inhibition remains unclear. Here we use selenium-doped hydroxyapatite nanoparticles (Se-HANs), which could potentially fill the bone defect generated from bone tumor removal while killing residual tumor cells, as an example to study the mechanism by which selenium released from the lattice of Se-HANs induces apoptosis of bone cancer cells in vitro and inhibits the growth of bone tumors in vivo...
November 22, 2016: ACS Nano
Grégory Guisbiers, Humberto H Lara, Ruben Mendoza-Cruz, Guillermo Naranjo, Brandy A Vincent, Xomalin G Peralta, Kelly L Nash
Selenoproteins play an important role in the human body by accomplishing essential biological functions like oxido-reductions, antioxidant defense, thyroid hormone metabolism and immune response; therefore, the possibility to synthesize selenium nanoparticles free of any contaminants is exciting for future nano-medical applications. This paper reports the first synthesis of selenium nanoparticles by femtosecond pulsed laser ablation in de-ionized water. Those pure nanoparticles have been successfully used to inhibit the formation of Candida albicans biofilms...
October 25, 2016: Nanomedicine: Nanotechnology, Biology, and Medicine
Fatemeh Elahian, Somayeh Reiisi, Arman Shahidi, Seyed Abbas Mirzaei
A genetically modified Pichia pastoris strain overexpressing a metal-resistant variant of cytochrome b5 reductase enzyme was developed for silver and selenium biosorption and for nanoparticle production. The maximum recombinant enzyme expression level was approximately 31IU/ml in the intercellular fluid after 24h of incubation, and the capacity of the recombinant biomass for the biosorption of silver and selenium in aqueous batch models were measured as 163.90 and 63.71mg/g, respectively. The ions were reduced in the presence of enzyme, leading to the formation of stable 70-180nm metal nanoparticles...
October 24, 2016: Nanomedicine: Nanotechnology, Biology, and Medicine
Hanaa H Ahmed, Mohamed Diaa Abd El-Maksoud, Ahmed E Abdel Moneim, Hadeer A Aglan
This research was delineated to explore the efficacy of selenium nanoparticles delivered in liposomes (L-Se) in the mitigation of type-2 diabetes mellitus. Adult female Wistar rats were assigned into four groups: group I, the normal control group in which the rats received normal saline solution orally; group II, the diabetic control group in which the rats were injected intraperitoneally with a single dose of streptozotocin (STZ) for induction of diabetes; group III, the metformin (Met)-treated group in which the diabetic rats were treated orally with Met; and group IV, the L-Se-treated group in which the diabetic rats were treated orally with L-Se...
October 26, 2016: Biological Trace Element Research
Niels Hadrup, Katrin Loeschner, Kasper Skov, Gitte Ravn-Haren, Erik H Larsen, Alicja Mortensen, Henrik R Lam, Henrik L Frandsen
Selenium (Se) is an essential element with a small difference between physiological and toxic doses. To provide more effective and safe Se dosing regimens, as compared to dosing with ionic selenium, nanoparticle formulations have been developed. However, due to the nano-formulation, unexpected toxic effects may occur. We used metabolite pattern determination in urine to investigate biological and/or toxic effects in rats administered nanoparticles and for comparison included ionic selenium at an equimolar dose in the form of sodium selenite...
2016: PeerJ
Snober Ahmed, John Brockgreitens, Ke Xu, Abdennour Abbas
With increasing biomedical and engineering applications of selenium nanospheres (SeNS), new efficient methods are needed for the synthesis and long-term preservation of these nanomaterials. Currently, SeNS are mostly produced through the biosynthesis route using microorganisms or by using wet chemical reduction, both of which have several limitations in terms of nanoparticle size, yield, production time and long-term stability of the nanoparticles. Here, we introduce a novel approach for rapid synthesis and long-term preservation of SeNS on a solid microporous support by combining a mild hydrothermal process with chemical reduction...
October 17, 2016: Nanotechnology
Balakrishna Ananthoju, Jeotikanta Mohapatra, Manoj K Jangid, D Bahadur, N V Medhekar, M Aslam
Cations and anions are replaced with Fe, Mn, and Se in CZTS in order to control the formations of the secondary phase, the band gap, and the micro structure of Cu2ZnSnS4. We demonstrate a simplified synthesis strategy for a range of quaternary chalcogenide nanoparticles such as Cu2ZnSnS4 (CZTS), Cu2FeSnS4 (CFTS), Cu2MnSnS4 (CMTS), Cu2ZnSnSe4 (CZTSe), and Cu2ZnSn(S0.5Se0.5)4 (CZTSSe) by thermolysis of metal chloride precursors using long chain amine molecules. It is observed that the crystal structure, band gap and micro structure of the CZTS thin films are affected by the substitution of anion/cations...
October 17, 2016: Scientific Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"