Read by QxMD icon Read

Piezo channel

David J Beech, Bailong Xiao
No abstract text is available yet for this article.
March 15, 2018: Journal of Physiology
Ming Zhong, Yulia Komarova, Jalees Rehman, Asrar B Malik
No abstract text is available yet for this article.
January 1, 2018: Pulmonary Circulation
Qiancheng Zhao, Heng Zhou, Shaopeng Chi, Yanfeng Wang, Jianhua Wang, Jie Geng, Kun Wu, Wenhao Liu, Tingxin Zhang, Meng-Qiu Dong, Jiawei Wang, Xueming Li, Bailong Xiao
The mechanosensitive Piezo channels function as key eukaryotic mechanotransducers. However, their structures and mechanogating mechanisms remain unknown. Here we determine the three-bladed, propeller-like electron cryo-microscopy structure of mouse Piezo1 and functionally reveal its mechanotransduction components. Despite the lack of sequence repetition, we identify nine repetitive units consisting of four transmembrane helices each-which we term transmembrane helical units (THUs)-which assemble into a highly curved blade-like structure...
February 22, 2018: Nature
Li He, Guangwei Si, Jiuhong Huang, Aravinthan D T Samuel, Norbert Perrimon
Somatic stem cells constantly adjust their self-renewal and lineage commitment by integrating various environmental cues to maintain tissue homeostasis. Although numerous chemical and biological signals have been identified that regulate stem-cell behaviour, whether stem cells can directly sense mechanical signals in vivo remains unclear. Here we show that mechanical stress regulates stem-cell differentiation in the adult Drosophila midgut through the stretch-activated ion channel Piezo. We find that Piezo is specifically expressed in previously unidentified enteroendocrine precursor cells, which have reduced proliferation ability and are destined to become enteroendocrine cells...
February 7, 2018: Nature
Jie Liu, Jianli Wang, Yuning Wang, Donghe Tian, Quan Zheng, Xudong Lin, Liang Wang, Qingyun Yang
To improve the beam quality of the uplink laser, a 37 channel piezo-ceramic deformable mirror was inserted into the laser launch optics to compensate the static aberrations. An interferometer was used as the calibration light source as well as the wavefront sensor to perform closed-loop correction for the moment. About 0.38λ root mean square (rms) aberrations, including the deformable mirror's initial figure error, were compensated, and the residual error was less than 0.07λ rms. Field observations with a 2 m optical telescope demonstrated that the peak intensity value of the laser guide star (LGS) spot increased from 5650 to 7658, and the full width at half-maximum (FWHM) size reduced from 4...
February 1, 2018: Applied Optics
Kei Saotome, Swetha E Murthy, Jennifer M Kefauver, Tess Whitwam, Ardem Patapoutian, Andrew B Ward
Piezo1 and Piezo2 are mechanically activated ion channels that mediate touch perception, proprioception and vascular development. Piezos are distinct from other ion channels and their structure remains poorly defined, impeding detailed study of their gating and ion permeation properties. Here we report a high-resolution cryo-electron microscopy structure of the mouse Piezo1 trimer. The detergent-solubilized complex adopts a three-blade propeller shape with a curved transmembrane region containing at least 26 transmembrane helices per protomer...
December 20, 2017: Nature
Yusong R Guo, Roderick MacKinnon
Mechanosensitive ion channels convert external mechanical stimuli into electrochemical signals for critical processes including touch sensation, balance, and cardiovascular regulation. The best understood mechanosensitive channel, MscL, opens a wide pore, which accounts for mechanosensitive gating due to in-plane area expansion. Eukaryotic Piezo channels have a narrow pore and therefore must capture mechanical forces to control gating in another way. We present a cryo-EM structure of mouse Piezo1 in a closed conformation at 3...
December 12, 2017: ELife
Jason Wu, Michael Young, Amanda H Lewis, Ashley N Martfeld, Breanna Kalmeta, Jörg Grandl
Piezo proteins form mechanically activated ion channels that are responsible for our sense of light touch, proprioception, and vascular blood flow. Upon activation by mechanical stimuli, Piezo channels rapidly inactivate in a voltage-dependent manner through an unknown mechanism. Inactivation of Piezo channels is physiologically important, as it modulates overall mechanical sensitivity, gives rise to frequency filtering of repetitive mechanical stimuli, and is itself the target of numerous human disease-related channelopathies that are not well understood mechanistically...
November 28, 2017: Cell Reports
Tingxin Zhang, Shaopeng Chi, Fan Jiang, Qiancheng Zhao, Bailong Xiao
Piezo proteins are bona fide mammalian mechanotransduction channels for various cell types including endothelial cells. The mouse Piezo1 of 2547 residues forms a three-bladed, propeller-like homo-trimer comprising a central pore-module and three propeller-structures that might serve as mechanotransduction-modules. However, the mechanogating and regulation of Piezo channels remain unclear. Here we identify the sarcoplasmic /endoplasmic-reticulum Ca2+ ATPase (SERCA), including the widely expressed SERCA2, as Piezo interacting proteins...
November 27, 2017: Nature Communications
Yubo Wang, Bailong Xiao
The evolutionarily conserved Piezo family of proteins, including Piezo1 and Piezo2, encodes the long-sought-after mammalian mechanosensitive cation channels that play critical roles in various mechanotransduction processes such as touch, pain, proprioception, vascular development and blood pressure regulation. Mammalian Piezo proteins contain over 2500 amino acids with numerous predicted transmembrane segments, and do not bear sequence homology with any known class of ion channels. Thus, it is imperative, but challenging, to understand how they serve as effective mechanotransducers for converting mechanical force into electrochemical signals...
November 24, 2017: Journal of Physiology
Emad A Ibrahim, Shamsa Al Awar, Zuhur H Balayah, Leontios J Hadjileontiadis, Ahsan H Khandoker
The aim of this study is to investigate that fetal heart rates (fHR) extracted from fetal phonocardiography (fPCG) could convey similar information of fHR from cardiotocography (CTG). Four-channel fPCG sensors made of low cost (<$1) ceramic piezo vibration sensor within 3D-printed casings were used to collect abdominal phonogram signals from 20 pregnant mothers (>34 weeks of gestation). A novel multi-lag covariance matrix-based eigenvalue decomposition technique was used to separate maternal breathing, fetal heart sounds (fHS) and maternal heart sounds (mHS) from abdominal phonogram signals...
2017: Frontiers in Physiology
Swetha E Murthy, Adrienne E Dubin, Ardem Patapoutian
Cellular mechanotransduction, the process of translating mechanical forces into biological signals, is crucial for a wide range of physiological processes. A role for ion channels in sensing mechanical forces has been proposed for decades, but their identity in mammals remained largely elusive until the discovery of Piezos. Recent research on Piezos has underscored their importance in somatosensation (touch perception, proprioception and pulmonary respiration), red blood cell volume regulation, vascular physiology and various human genetic disorders...
December 2017: Nature Reviews. Molecular Cell Biology
Wenjun Zheng, Frederick Sachs
The PIEZO channels, a family of mechanosensitive channels in vertebrates, feature a fast activation by mechanical stimuli (eg, membrane tension) followed by a slower inactivation. Although a medium-resolution structure of the trimeric form of PIEZO1 was solved by cryo-electron microscopy (cryo-EM), key structural changes responsible for the channel activation and inactivation are still unknown. Toward decrypting the structural mechanism of the PIEZO1 activation and inactivation, we performed systematic coarse-grained modeling using an elastic network model and related modeling/analysis tools (ie, normal mode analysis, flexibility and hotspot analysis, correlation analysis, and cryo-EM-based hybrid modeling and flexible fitting)...
December 2017: Proteins
S L Alper
Mutations in the genes encoding the mechanosensitive cation channels PIEZO1 and PIEZO2 are responsible for multiple hereditary human diseases. Loss-of-function mutations in the human PIEZO1 gene cause autosomal recessive congenital lymphatic dysplasia. Gain-of-function mutations in the human PIEZO1 gene cause the autosomal dominant hemolytic anemia, hereditary xerocytosis (also known as dehydrated stomatocytosis). Loss-of-function mutations in the human PIEZO2 gene cause an autosomal recessive syndrome of muscular atrophy with perinatal respiratory distress, arthrogryposis, and scoliosis...
2017: Current Topics in Membranes
C D Cox, N Bavi, B Martinac
Piezo channels are a ubiquitously expressed, principal type of molecular force sensor in eukaryotes. They enable cells to decode a myriad of physical stimuli and are essential components of numerous mechanosensory processes. Central to their physiological role is the ability to change conformation in response to mechanical force. Here we discuss the evolutionary origin of Piezo in relation to other MS channels in addition to the force that gates Piezo channels. In particular, we discuss whether Piezo channels are inherently mechanosensitive in accordance with the force-from-lipid paradigm which has been firmly established for bacterial MS channels and two-pore domain K(+) (K2P) channels...
2017: Current Topics in Membranes
M M Maneshi, P A Gottlieb, S Z Hua
Microfluidics is an interdisciplinary field intersecting many areas in engineering. Utilizing a combination of physics, chemistry, biology, and biotechnology, along with practical applications for designing devices that use low volumes of fluids to achieve high-throughput screening, is a major goal in microfluidics. Microfluidic approaches allow the study of cells growth and differentiation using a variety of conditions including control of fluid flow that generates shear stress. Recently, Piezo1 channels were shown to respond to fluid shear stress and are crucial for vascular development...
2017: Current Topics in Membranes
R Gnanasambandam, P A Gottlieb, F Sachs
Piezo channels are eukaryotic, cation-selective mechanosensitive channels (MSCs), which show rapid activation and voltage-dependent inactivation. The kinetics of these channels are largely consistent across multiple cell types and different stimulation paradigms with some minor variability. No accessory subunits that associate with Piezo channels have been reported. They are homotrimers and each ∼300kD monomer has an N-terminal propeller blade-like mechanosensing module, which can confer mechanosensing capabilities on ASIC-1 (the trimeric non-MSC, acid-sensing ion channel-1) and a C-terminal pore module, which influences conductance, selectivity, and channel inactivation...
2017: Current Topics in Membranes
W Lee, F Guilak, W Liedtke
Cartilage is an intrinsically mechanically sensitive tissue composed of chondrocytes as the only cell type. Chondrocyte mechanotransduction is not well understood, but recently we identified critical components of the mechanotransduction machinery demonstrating how mechanical stimulation of these cells can be converted into cellular calcium signals. Physiologic mechanical cues induce anabolic responses of (post-mitotic) chondrocytes via transient receptor potential vanilloid 4 ion channels, whereas injurious mechanical stress is transduced by Piezo1 jointly with Piezo2 ion channels...
2017: Current Topics in Membranes
I Borbiro, T Rohacs
The recently identified mechanically activated Piezo1 and Piezo2 channels play major roles in various aspects of mechanosensation in mammals, and their mutations are associated with human diseases. Recent reports show that activation of cell surface receptors coupled to heterotrimeric Gq proteins increase the sensitivity of Piezo2 channels to mechanical stimuli. Activation of the cyclic adenosine monophosphate pathway was also shown to potentiate Piezo2 channel activity. This phenomenon may play a role in mechanical allodynia or hyperalgesia during inflammation...
2017: Current Topics in Membranes
C Alcaino, G Farrugia, A Beyder
Sensation of mechanical forces is critical for normal function of the gastrointestinal (GI) tract and abnormalities in mechanosensation are linked to GI pathologies. In the GI tract there are several mechanosensitive cell types-epithelial enterochromaffin cells, intrinsic and extrinsic enteric neurons, smooth muscle cells and interstitial cells of Cajal. These cells use mechanosensitive ion channels that respond to mechanical forces by altering transmembrane ionic currents in a process called mechanoelectrical coupling...
2017: Current Topics in Membranes
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"