Read by QxMD icon Read

Bio containment

Lauren Sfakis, Tim Kamaldinov, Melinda Larsen, James Castracane, Alexander Khmaladze
Quantifying confocal images to enable location of specific proteins of interest in 3D is important for many tissue engineering applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in tissue engineering and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often key to evaluating scaffold efficacy...
October 19, 2016: Tissue Engineering. Part C, Methods
S Vichaphund, V Sricharoenchaikul, D Atong
Fly ash-derived HZSM-5 catalyst was first applied in the catalytic pyrolysis of Jatropha residues in a semi-continuous fixed-bed reactor. The catalytic performance of HZSM-5 catalysts prepared from chemicals including conventional hydrothermal HZSM-5, Ni/HZSM-5 by ion exchange, and commercial HZSM-5 (Si/Al = 30) was evaluated for comparison. Catalytic pyrolysis of Jatropha residues with HZSM-5 catalysts was investigated in terms of product yields and qualities of bio-oil and bio-char. The liquid yield produced from fly ash-derived HZSM-5 was 29...
October 17, 2016: Environmental Technology
Ganiyu Oladunjoye Oyetibo, Keisuke Miyauchi, Hitoshi Suzuki, Ginro Endo
Ecotoxicological implications of mercury (Hg) pollution of hydrosphere require effective Hg-removal strategies as antidote to the environmental problems. Mercury-tolerant yeasts, Yarrowia spp. Idd1 and Idd2 strains, were studied for intracellular accumulation and extracellular micro-precipitation of Hg during growth stage of the yeast strains. In a liquid medium containing 870 (±23.6) µg of bioavailable Hg(2+), 419.0 µg Hg(2+) (approx.) was taken up by the wet biomasses of the yeast strains after 48 h post-inoculation...
December 2016: AMB Express
Jorin Hoogenboom, Nathalja Berghuis, Dario Cramer, Rene Geurts, Han Zuilhof, Tom Wennekes
BACKGROUND: Carbohydrates, also called glycans, play a crucial but not fully understood role in plant health and development. The non-template driven formation of glycans makes it impossible to image them in vivo with genetically encoded fluorescent tags and related molecular biology approaches. A solution to this problem is the use of tailor-made glycan analogs that are metabolically incorporated by the plant into its glycans. These metabolically incorporated probes can be visualized, but techniques documented so far use toxic copper-catalyzed labeling...
October 10, 2016: BMC Plant Biology
Evi Berchtold, Gergely Csaba, Ralf Zimmer
Several methods predict activity changes of transcription factors (TFs) from a given regulatory network and measured expression data. But available gene regulatory networks are incomplete and contain many condition-dependent regulations that are not relevant for the specific expression measurement. It is not known which combination of active TFs is needed to cause a change in the expression of a target gene. A method to systematically evaluate the inferred activity changes is missing. We present such an evaluation strategy that indicates for how many target genes the observed expression changes can be explained by a given set of active TFs...
2016: PloS One
A J Wright, J L Richens, J P Bramble, N Cathcart, V Kitaev, P O'Shea, A J Hudson
We present a new technique for the study of model membranes on the length-scale of a single nano-sized liposome. Silver decahedral nanoparticles have been encapsulated by a model unilamellar lipid bilayer creating nano-sized lipid vesicles. The metal core has two roles (i) increasing the polarizability of vesicles, enabling a single vesicle to be isolated and confined in an optical trap, and (ii) enhancing Raman scattering from the bilayer, via the high surface-plasmon field at the sharp vertices of the decahedral particles...
September 15, 2016: Nanoscale
Stephanie Karmann, Stéphanie Follonier, Monica Bassas-Galia, Sven Panke, Manfred Zinn
Poly(3-hydroxyalkanoates) (PHAs) are bio-based and biodegradable polyesters which have been considered as a promising alternative to petrol-based plastics. Its bacterial production is a dynamic process in which intracellular polymerization and depolymerization are closely linked and depend on the availability of carbon substrates and other nutrients. These dynamics require a fast and quantitative method to determine the optimal harvest-time of PHA containing cells or to adjust carbon supply. In principle, flow cytometry (FCM) is an ideal tool that suits these requirements and, in addition, provides data on the PHA content of different cell populations...
October 6, 2016: Journal of Microbiological Methods
Chaozhi Pan, Swee Ngin Tan, Jean Wan Hong Yong, Liya Ge
Gibberellins, as a group of phytohormones, exhibit a wide variety of bio-functions within plant growth and development, which have been used to increase crop yields. Many analytical procedures, therefore, have been developed for the determination of the types and levels of endogenous and exogenous gibberellins. As plant tissues contain gibberellins in trace amounts (usually at the level of nanogram per gram fresh weight or even lower), the sample pre-treatment steps (extraction, pre-concentration, and purification) for gibberellins are reviewed in details...
September 15, 2016: Journal of Separation Science
Rossella Arrigo, Elisabetta Morici, Nadka Tzankova Dintcheva
BACKGROUND: This work presents a sustainable approach for the stabilization of polylactic acid (PLA) against thermo-oxidative aging. METHODS: Naturally occurring phenolic and polyphenolic compounds, such as ferulic acid (FerAc), vanillic acid (VanAc), quercetin (Querc) and vitamin E (VitE), were introduced into PLA. RESULTS: The preliminary characterization of the systems formulated containing different amounts of natural stabilizers showed that all compounds used acted as plasticizers, leading to a decrease in rheological functions with respect to neat PLA, without significantly modifying the crystallinity of the raw material...
October 1, 2016: Journal of Applied Biomaterials & Functional Materials
Adele Sparavigna, Beatrice Tenconi
BACKGROUND: An injectable medical device containing stable hybrid cooperative complexes of high- and low-molecular-weight hyaluronic acid (HA) has been developed with characteristics suited for a global improvement of facial esthetics. OBJECTIVE: To evaluate the HA product performance in improving some key facial esthetic features. The study employed clinical scales, subjective evaluations, and facial skin objective measurements. METHODS: A single Italian site treated 64 female subjects aged 38-60 years, with injections at five predetermined points, on each side of the face, with a 4-week time lapse between the first and the second product administration...
2016: Clinical, Cosmetic and Investigational Dermatology
Brennan Campbell, Robert Ionescu, Maxwell Tolchin, Kazi Ahmed, Zachary Favors, Krassimir N Bozhilov, Cengiz S Ozkan, Mihrimah Ozkan
Silicon is produced in a variety of ways as an ultra-high capacity lithium-ion battery (LIB) anode material. The traditional carbothermic reduction process required is expensive and energy-intensive; in this work, we use an efficient magnesiothermic reduction to convert the silica-based frustules within diatomaceous earth (diatomite, DE) to nanosilicon (nanoSi) for use as LIB anodes. Polyacrylic acid (PAA) was used as a binder for the DE-based nanoSi anodes for the first time, being attributed for the high silicon utilization under high current densities (up to 4C)...
October 7, 2016: Scientific Reports
George Kubas, William Rees, Jonathan Caguiat, David Asch, Diana Fagan, Pedro Cortes
The present research investigates the identification of amino acid sequences that selectively bind to a pentaerythritol tetranitrate (PETN) explosive surrogate. Through the use of a phage display technique and enzyme-linked immunosorbent assays (ELISA), a peptide library was tested against PETNH (pentaerythritol trinitrate hemisuccinate), a surrogate of PETN, in order to screen for those with amino acids having affinity toward the explosive. The use of the PETN surrogate allowed the immobilization of the target during the screening process, while retaining a chemical profile similar to that of PETN...
October 6, 2016: Biopolymers
Jun Li, Dajeong Yim, Woo-Dong Jang, Juyoung Yoon
Crown ethers, discovered by the winner of the Nobel Prize Charles Pedersen, are cyclic chemical compounds that consist of a ring or multiple rings containing several ether groups that are capable of binding alkali ions. A smart fluorescent probe containing a crown ether moiety could be developed as a sensor for metal ions, anions and other bio-molecules and be further applied to monitor the relevant biological process in vivo. This review highlights recent advances which can be divided into seven parts: (i) fluorescent probes containing a simple crown ether or an aza-crown ether structure; (ii) fluorescent probes containing an azathia crown ether; (iii) fluorescent probes containing a cryptand; (iv) fluorescent probes containing two or more binding sites; (v) crown ether derivatives-metal complex assisted chemosensing of bioactive species; (vi) crown ether-based chemosensors for bioactive molecular detection; and (vii) efforts to improve biological relevance...
September 26, 2016: Chemical Society Reviews
Xin Zhang, Fei Xie, Baobei Lv, Pengxiang Zhao, Xuemei Ma
A simple and high-throughput assay to detect fungicide resistance is required for large-scale monitoring of the emergence of resistant strains of Botrytis cinerea. Using suspension array technology performed on a Bio-Plex 200 System, we developed a single-tube allele-specific primer extension assay that can simultaneously detect eight alleles in one reaction. These eight alleles include E198 and 198A of the β-Tubulin gene (BenA), H272 and 272Y of the Succinate dehydrogenase iron-sulfur subunit gene (SdhB), I365 and 365S of the putative osmosensor histidine kinase gene (BcOS1), and F412 and 412S of the 3-ketoreductase gene (erg27)...
2016: Frontiers in Microbiology
Henda Ferchichi, Sarra Bacha, Nadia Kourda, Salma Melaouhia, Emna Gaies, Mohamed Lakhal, Anis Klouz, S Trabelsi, Issam Salouage
Introduction In recent years, many marine resources have drew attention in the research for bio-active compounds to develop new drugs and health foods. (1) Marine algae are now considered as a rich source of antioxidants (2). It is known that seaweeds contain numerous bioactive substances that have the ability to lower cholesterol, reduce blood pressure, promote healthy digestion; and antioxidant activity (3). Natural antioxidants are interesting compounds due to their properties which help prevent oxidative stress (4), among other potentially beneficial actions...
April 2016: La Tunisie Médicale
Zenebe Girmay, Weldesemayat Gorems, Getachew Birhanu, Solomon Zewdie
Mushroom cultivation is reported as an economically viable bio-technology process for conversion of various lignocellulosic wastes. Given the lack of technology know-how on the cultivation of mushroom, this study was conducted in Wondo Genet College of Forestry and Natural Resource, with the aim to assess the suitability of selected substrates (agricultural and/or forest wastes) for oyster mushroom cultivation. Accordingly, four substrates (cotton seed, paper waste, wheat straw, and sawdust) were tested for their efficacy in oyster mushroom production...
December 2016: AMB Express
Mélanie Flaender, Guillaume Costa, Guillaume Nonglaton, Christine Saint-Pierre, Didier Gasparutto
DNA is under continuous assault by environmental and endogenous reactive oxygen and alkylating species, inducing the formation of mutagenic, toxic and genome destabilizing nucleobase lesions. Due to the implications of such genetic alterations in cell death, aging, inflammation, neurodegenerative diseases and cancer, many efforts have been devoted to developing assays that aim at analyzing DNA repair activities from purified enzymes or cell extracts. The present work deals with the conception and application of a new, miniaturized and parallelized on surface-DNA biosensor to measure base excision repair (BER) activities...
September 22, 2016: Analyst
Yan Dang, Yuqing Lei, Zhao Liu, Yiting Xue, Dezhi Sun, Li-Ying Wang, Dawn E Holmes
A considerable amount of leachate with high fulvic acid (FA) content is generated during the municipal solid waste (MSW) incineration process. This incineration leachate is usually processed by downstream bio-methanogenic treatment. However, few studies have examined the impact that these compounds have on methanogenesis and how they are degraded and transformed during the treatment process. In this study, a laboratory-scale expanded granular sludge bed (EGSB) reactor was operated with MSW incineration leachate containing various concentrations of FA (1500 mg/L to 8000 mg/L) provided as the influent...
September 23, 2016: Water Research
Ingrid Corazzari, Maura Tomatis, Francesco Turci, Sara Ferraris, Elisa Bertone, Enrico Prenesti, Enrica Vernè
Magnetite-containing glass-ceramics are promising bio-materials for replacing bone tissue after tumour resection. Thanks to their ferrimagnetic properties, they generate heat when subjected to an alternated magnetic field. In virtue of this they can be employed for the hyperthermic treatment of cancer. Moreover, grafting anti-cancer drugs onto their surface produces specific anti-neoplastic activity in these biomaterials. Gallic acid (GA) exhibits antiproliferative activity which renders it a promising candidate for anticancer applications...
September 23, 2016: Colloids and Surfaces. B, Biointerfaces
Laura Elizabeth Valencia-Gómez, Santos Adriana Martel-Estrada, Claudia Vargas-Requena, José Luis Rivera-Armenta, Noe Alba-Baena, Claudia Rodríguez-González, Imelda Olivas-Armendáriz
Bio-composites films were prepared by casting and drying of aqueous solutions containing different weight ratios of chitosan and bark of Mimosa tenuiflora. The physico-chemical and functional properties of the films were characterized by scanning electron microscopy, dynamical mechanical analysis, wettability, cytotoxicity and in vitro antibacterial activities. The morphology studies confirmed that the presence of Mimosa tenuiflora change the surface of films. Moreover, the incorporation of Mimosa tenuiflora improved the thermal stability of the films, as it was indicated by the changes in the glass temperatures obtained...
September 28, 2016: International Journal of Biological Macromolecules
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"