Read by QxMD icon Read

arabinogalactan proteins

Allan M Showalter, Brian D Keppler, Xiao Liu, Jens Lichtenberg, Lonnie R Welch
BACKGROUND: Hydroxyproline-rich glycoproteins (HRGPs) constitute a plant cell wall protein superfamily that functions in diverse aspects of growth and development. This superfamily contains three members: the highly glycosylated arabinogalactan-proteins (AGPs), the moderately glycosylated extensins (EXTs), and the lightly glycosylated proline-rich proteins (PRPs). Chimeric and hybrid HRGPs, however, also exist. A bioinformatics approach is employed here to identify and classify AGPs, EXTs, PRPs, chimeric HRGPs, and hybrid HRGPs from the proteins predicted by the completed genome sequence of poplar (Populus trichocarpa)...
October 21, 2016: BMC Plant Biology
Abderrakib Zahid, Julie Despres, Magalie Benard, Eric Nguema-Ona, Jerome Leprince, David Vaudry, Christophe Rihouey, Maité Vicré-Gibouin, Azeddine Driouich, Marie-Laure Follet-Gueye
Plant derived arabinogalactan proteins (AGP) were repeatedly confirmed as immunologically as well as dermatologically active compounds. However little is currently known regarding their potential activity towards skin innate immunity. Here, we extracted and purified AGP from acacia (Acacia senegal) and baobab (Adansonia digitata) seeds to investigate their biological effects on the HaCaT keratinocyte cell line in an in vitro system. While AGP from both sources did not exhibit any cytotoxic effect, AGP from acacia seeds enhanced cell viability Moreover, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that AGP extracted from both species induced a substantial overexpression of hBD-2, TLR-5, and IL1-α genes...
October 13, 2016: Journal of Cellular Physiology
Li-Chan Yang, Ching-Yi Lai, Wen-Chuan Lin
This study investigated the effects of a type II arabinogalactan from Anoectochilus formosanus (AGAF) on natural killer (NK) cell-mediated cytotoxicity and the possible underlying mechanisms. This study reported that sustained exposure to AGAF increased NK-92MI cell-mediated cytotoxicity in a time- and concentration-dependent manner, as characterized according to the cellular lactic dehydrogenase leakage from K562 leukemia cells. Additionally, antibody neutralization studies have reported that interferon (IFN)-γ, but not perforin or tumor necrosis factor-α, released by NK-92MI NK cells is crucial in enhancing cytotoxicity through an autocrine loop...
January 2, 2017: Carbohydrate Polymers
Ningning Zhang, Maureen Dolan, Di Wu, Gregory C Phillips, Jianfeng Xu
Cell growth medium composition has profound impacts on the O -glycosylation of a "designer" arabinogalactan protein-based module; full glycosylation is essential in directing efficient extracellular secretion of the tagged recombinant protein. Expression of recombinant proteins in plant cells as fusion with a de novo designed hydroxyproline (Hyp)-O-glycosylated peptide (HypGP) tag, termed HypGP engineering technology, resulted in dramatically increased secreted protein yields. This is due to the function of the HypGP tag as a molecular carrier in promoting efficient transport of conjoined proteins into culture media...
September 8, 2016: Plant Cell Reports
Hyung-Taeg Cho
Coordination of the events between cytoplasm and cell wall is necessary for the proper cellular activity of plants. Cell wall-associated receptor kinases are likely to play the interface for the extra-to-internal signaling process. Arabidopsis ROOT HAIR SPECIFIC 10 (RHS10), belonging to the proline-rich extensin-like receptor kinase (PERK) family, is a Ser/Thr protein kinase with arabinogalactan protein (AGP) motifs in its extracellular domain (ECD). RHS10 and other angiosperm PERK homologs are inhibitory in root hair tip growth...
September 2016: Plant Signaling & Behavior
Elena N Makarova, Evgeny G Shakhmatov, Vladimir A Belyy
Arabinogalactan proteins (AGP) and pectic polysaccharides were isolated from above-ground parts of Heracleum sosnowskyi. The structural study has shown that a linear region of the pectic macromolecules consists of 1,4-α-d-galactopyranosyluronan blocks partially methyl esterified and acetylated. The branched region consists of 3-O- and partially 2-O-acetylated rhamnogalacturonan I. Side chains of the RG-I backbone include the regions of arabinogalactan I and branched 1,5-α-l-arabinan. The carbohydrate part of AGP consists of arabinogalactan II with a 1,3-β-d-Galp main chain...
November 20, 2016: Carbohydrate Polymers
Meike Baumgart, Karin Schubert, Marc Bramkamp, Julia Frunzke
: Proteins of the LCP (LytR, CpsA, Psr)-family were shown to inherit important roles in bacterial cell wall biosynthesis. However, their exact function in the formation of the complex cell wall structures of the corynebacteriales, including the prominent pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae, remains unclear. Here we analyzed the role of the LCP proteins LcpA and LcpB of Corynebacterium glutamicum both of which localize at regions of nascent cell wall biosynthesis...
August 22, 2016: Journal of Bacteriology
Jonathan S Griffiths, Marie-Jeanne Crepeau, Marie-Christine Ralet, Georg J Seifert, Helen M North
The plant cell wall is held together by the interactions between four major components: cellulose, pectin, hemicellulose, and proteins. Mucilage is a powerful model system to study the interactions between these components as it is formed of polysaccharides that are deposited in the apoplast of seed coat epidermal cells during seed development. When seeds are hydrated, these polysaccharides expand rapidly out of the apoplastic pocket, and form an adherent halo of mucilage around the seed. In Arabidopsis, mutations in multiple genes have similar loss of mucilage adherence phenotypes including CELLULOSE SYNTHASE 5 (CESA5)/MUCILAGE-MODIFIED 3 (MUM3), MUM5/MUCI21, SALT-OVERLY SENSITIVE 5 (SOS5), and FEI2...
2016: Frontiers in Plant Science
Yingnan Hou, Xinyang Guo, Philipp Cyprys, Ying Zhang, Andrea Bleckmann, Le Cai, Qingpei Huang, Yu Luo, Hongya Gu, Thomas Dresselhaus, Juan Dong, Li-Jia Qu
During the angiosperm (flowering-plant) life cycle, double fertilization represents the hallmark between diploid and haploid generations [1]. The success of double fertilization largely depends on compatible communication between the male gametophyte (pollen tube) and the maternal tissues of the flower, culminating in precise pollen tube guidance to the female gametophyte (embryo sac) and its rupture to release sperm cells. Several important factors involved in the pollen tube reception have been identified recently [2-6], but the underlying signaling pathways are far from being understood...
September 12, 2016: Current Biology: CB
Stefanie Duchow, Renate I Dahlke, Thomas Geske, Wolfgang Blaschek, Birgit Classen
Root extracts of the medicinal plant Pelargonium sidoides, native to South Africa, are used globally for the treatment of common cold and cough. Due to an increasing economic commercialization of P. sidoides remedies, wild collections of root material should be accompanied by effective methods for plant propagation like somatic embryogenesis. Based on this, the influence of arabinogalactan-proteins (AGPs) on somatic embryogenesis and plant propagation of P. sidoides has been investigated. High-molecular weight AGPs have been isolated from dried roots as well as from cell cultures of P...
November 5, 2016: Carbohydrate Polymers
Binwei Bi, Hao Yang, Yapeng Fang, Katsuyoshi Nishinari, Glyn O Phillips
Gum Acacia Seyal (ASY) is less valued than is gum Acacia Senegal, due to its poor emulsifying ability. The present study investigated the Maillard reaction between ASY and β-lactoglobulin (BLG) and its impact on the emulsifying properties of ASY. The reaction products of BLG/ASY mixture (r=1/4), prepared by dry-heating at 60°C and a relative humidity of 79%, as a function of incubation time, were characterized by SDS-PAGE, GPC-MALLS and DSC. The results showed that 12-24h of dry-heating under the given conditions was sufficient for conjugation, meanwhile avoiding the formation of deeply coloured and insoluble melanoidins...
January 1, 2017: Food Chemistry
Wenhua Lexcy Li, Yuanyuan Liu, Carl J Douglas
The pollen cell wall is important for protection of male sperm from physical stresses, and consists of an inner gametophyte-derived intine layer and a sporophyte-derived exine layer. The polymeric constituents of the robust exine are termed sporopollenin. The mechanisms by which sporopollenin is anchored onto microspores and polymerized in specific patterns are unknown, but the primexine, a transient cell wall matrix formed on the surface of microspores at the late tetrad stage, is hypothesized to play a key role...
August 5, 2016: Plant Physiology
Allan M Showalter, Debarati Basu
Arabinogalactan-proteins (AGPs) are ubiquitous cell wall components present throughout the plant kingdom. They are extensively post translationally modified by conversion of proline to hydroxyproline (Hyp) and by addition of arabinogalactan (AG) polysaccharides to Hyp residues. Two small gene subfamilies within the CAZy GT31 family, referred to as Hyp-galactosyltransferases (Hyp-GALTs and HPGTs), encode enzymes that specifically add galactose to AGP protein backbones as revealed by heterologous expression of the genes coupled with an in vitro enzyme assay and by biochemical characterization of the genetic knock-out mutants...
May 2016: Communicative & Integrative Biology
James Harrison, Georgina Lloyd, Maju Joe, Todd L Lowary, Edward Reynolds, Hannah Walters-Morgan, Apoorva Bhatt, Andrew Lovering, Gurdyal S Besra, Luke J Alderwick
UNLABELLED: Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), has a unique cell envelope which accounts for its unusual low permeability and contributes to resistance against common antibiotics. The main structural elements of the cell wall consist of a cross-linked network of peptidoglycan (PG) in which some of the muramic acid residues are covalently attached to a complex polysaccharide, arabinogalactan (AG), via a unique α-l-rhamnopyranose-(1→3)-α-d-GlcNAc-(1→P) linker unit...
2016: MBio
Daisuke Takahashi, Yukio Kawamura, Matsuo Uemura
Cold acclimation results in changes of the plasma membrane (PM) composition. The PM is considered to contain specific lipid/protein-enriched microdomains which can be extracted as detergent-resistant plasma membrane (DRM). Previous studies in animal cells have demonstrated that glycosylphosphatidylinositol-anchored proteins (GPI-APs) can be targeted to microdomains and/or the apoplast. However, the functional significance of GPI-APs during cold acclimation in plants is not yet fully understood. In this study, we aimed to investigate the responsiveness of GPI-APs to cold acclimation treatment in Arabidopsis We isolated the PM, DRM, and apoplast fractions separately and, in addition, GPI-AP-enriched fractions were prepared from the PM preparation...
September 2016: Journal of Experimental Botany
E Giannoutsou, P Apostolakos, B Galatis
The matrix cell wall materials, in developing Zea mays stomatal complexes are asymmetrically distributed, a phenomenon appearing related to the local cell wall expansion and deformation, the establishment of cell polarity, and determination of the cell division plane. In cells of developing Zea mays stomatal complexes, definite cell wall regions expand determinately and become locally deformed. This differential cell wall behavior is obvious in the guard cell mother cells (GMCs) and the subsidiary cell mother cells (SMCs) that locally protrude towards the adjacent GMCs...
November 2016: Planta
Gennady V Pogorelko, Nathan T Reem, Zachary T Young, Lauran Chambers, Olga A Zabotina
Cell walls are essential components of plant cells which perform a variety of important functions for the different cell types, tissues and organs of a plant. Besides mechanical function providing cell shape, cell walls participate in intercellular communication, defense during plant-microbe interactions, and plant growth. The plant cell wall consists predominantly of polysaccharides with the addition of structural glycoproteins, phenolic esters, minerals, lignin, and associated enzymes. Alterations in the cell wall composition created through either changes in biosynthesis of specific constituents or their post-synthetic modifications in the apoplast compromise cell wall integrity and frequently induce plant compensatory responses as a result of these alterations...
2016: PloS One
Ana Marta Pereira, Ana Lúcia Lopes, Sílvia Coimbra
A precise control of sperm cells delivery and fusion to the egg cell and the central cell is fundamental for the accomplishment of successful double fertilization in flowering plants. This is mostly regulated by female gametophyte egg and central cells, which control the timing of synergids cell degeneration. We recently identified an arabinogalactan protein, AGP4, named JAGGER, that impairs the persistent synergid degeneration, and consequently leads to the attraction of more than one pollen tube into one embryo sac, a situation termed polytubey...
August 2, 2016: Plant Signaling & Behavior
Abdoul Salam Koroney, Carole Plasson, Barbara Pawlak, Ramatou Sidikou, Azeddine Driouich, Laurence Menu-Bouaouiche, Maïté Vicré-Gibouin
BACKGROUND AND AIMS: Potato (Solanum tuberosum) is an important food crop and is grown worldwide. It is, however, significantly sensitive to a number of soil-borne pathogens that affect roots and tubers, causing considerable economic losses. So far, most research on potato has been dedicated to tubers and hence little attention has been paid to root structure and function. METHODS: In the present study we characterized root border cells using histochemical staining, immunofluorescence labelling of cell wall polysaccharides epitopes and observation using laser confocal microscopy...
July 6, 2016: Annals of Botany
Allan M Showalter, Debarati Basu
Recent research, mostly in Arabidopsis thaliana, has led to the identification and characterization of the glycosyltransferases responsible for the biosynthesis of two of the most functionally important and abundant families of plant cell wall proteins, extensins, and arabinogalactan-proteins. Extensin glycosylation involves monogalactosylation of serine residues by O-α-serine galactosyltransferase and the addition of oligoarabinosides one to five arabinose units in length to contiguous hydroxyproline residues by a set of specific arabinosyltransferase enzymes, which includes hydroxyproline O-β-arabinosyltransferases, β-1,2-arabinosyltransferases, and at least one α-1,3-arabinosyltransferase...
2016: Frontiers in Plant Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"