Read by QxMD icon Read

gustatory receptor

Wenjing Wu, Zhiqiang Li, Shijun Zhang, Yunling Ke, Yahui Hou
BACKGROUND: Carbon dioxide (CO2) is a pervasive chemical stimulus that plays a critical role in insect life, eliciting behavioral and physiological responses across different species. High CO2 concentration is a major feature of termite nests, which may be used as a cue for locating their nests. Termites also survive under an elevated CO2 concentration. However, the mechanism by which elevated CO2 concentration influences gene expression in termites is poorly understood. METHODS: To gain a better understanding of the molecular basis involved in the adaptation to CO2 concentration, a transcriptome of Coptotermes formosanus Shiraki was constructed to assemble the reference genes, followed by comparative transcriptomic analyses across different CO2 concentration (0...
2016: PeerJ
Cristina M Crava, Sukania Ramasamy, Lino Ometto, Gianfranco Anfora, Omar Rota-Stabelli
Chemosensory perception allows insects to interact with the environment by perceiving odorant or tastant molecules; genes encoding chemoreceptors are the molecular interface between the environment and the insect, and play a central role in mediating its chemosensory behavior. Here we explore how the evolution of these genes in the emerging pest Drosophila suzukii correlates with the peculiar ecology of this species. We annotated approximately 130 genes coding for gustatory receptors (GRs) and divergent ionotropic receptors (dIRs) in D...
October 19, 2016: G3: Genes—Genomes—Genetics
Stefan Dippel, Martin Kollmann, Georg Oberhofer, Alice Montino, Carolin Knoll, Milosz Krala, Karl-Heinz Rexer, Sergius Frank, Robert Kumpf, Joachim Schachtner, Ernst A Wimmer
BACKGROUND: The red flour beetle Tribolium castaneum is an emerging insect model organism representing the largest insect order, Coleoptera, which encompasses several serious agricultural and forest pests. Despite the ecological and economic importance of beetles, most insect olfaction studies have so far focused on dipteran, lepidopteran, or hymenopteran systems. RESULTS: Here, we present the first detailed morphological description of a coleopteran olfactory pathway in combination with genome-wide expression analysis of the relevant gene families involved in chemoreception...
October 17, 2016: BMC Biology
Long-Wa Zhang, Ke Kang, Shi-Chang Jiang, Ya-Nan Zhang, Tian-Tian Wang, Jing Zhang, Long Sun, Yun-Qiu Yang, Chang-Chun Huang, Li-Ya Jiang, De-Gui Ding
Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) is an invasive insect pest which, in China, causes unprecedented damage and economic losses due to its extreme fecundity and wide host range, including forest and shade trees, and even crops. Compared to the better known lepidopteran species which use Type-I pheromones, little is known at the molecular level about the olfactory mechanisms of host location and mate choice in H. cunea, a species using Type-II lepidopteran pheromones. In the present study, the H...
2016: PloS One
David Levitan, Yaihara Fortis-Santiago, Joshua A Figueroa, Emily E Reid, Takashi Yoshida, Nicholas C Barry, Abigail Russo, Donald B Katz
: In neuroscientists' attempts to understand the long-term storage of memory, topics of particular importance and interest are the cellular and system mechanisms of maintenance (e.g., those sensitive to ζ-inhibitory peptide, ZIP) and those induced by memory retrieval (i.e., reconsolidation). Much is known about each of these processes in isolation, but less is known concerning how they interact. It is known that ZIP sensitivity and memory retrieval share at least some molecular targets (e...
October 12, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
David Levitan, Shunit Gal-Ben-Ari, Christopher Heise, Tali Rosenberg, Alina Elkobi, Sharon Inberg, Carlo Sala, Kobi Rosenblum
The current dogma suggests that the formation of long-term memory (LTM) is dependent on protein synthesis but persistence of the memory trace is not. However, many of the studies examining the effect of protein synthesis inhibitors (PSIs) on LTM persistence were performed in the hippocampus, which is known to have a time-dependent role in memory storage, rather than the cortex, which is considered to be the main structure to store long-term memories. Here we studied the effect of PSIs on LTM formation and persistence in male Wistar Hola (n ≥ 5) rats by infusing the protein synthesis inhibitor, anisomycin (100 μg, 1 μl), into the gustatory cortex (GC) during LTM formation and persistence in conditioned taste aversion (CTA)...
2016: NPJ Sci Learn
Sabrina Alves Fernandes, Silvia Bona, Carlos Thadeu Schmidt Cerski, Norma Possa Marroni, Claudio Augusto Marroni
Background: The inherent complications of cirrhosis include protein-calorie malnutrition and micronutrient deficiencies.Changes in taste are detrimental to the nutritional status, and the mechanism to explain these changes is not well documented in the cirrhotic patients. Objective: To evaluate the taste buds of cirrhotic rats. Methods: Fourteen male Wistar rats were evaluated. After 16 weeks, the liver was removed to histologically diagnose cirrhosis, and blood was collected to perform liver integrity tests...
October 2016: Arquivos de Gastroenterologia
Olena Riabinina, Darya Task, Elizabeth Marr, Chun-Chieh Lin, Robert Alford, David A O'Brochta, Christopher J Potter
Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory receptor neurons expressing the odorant receptor co-receptor (Orco) gene are labelled with GFP. These neurons project from the antennae and maxillary palps to the antennal lobe (AL) and from the labella on the proboscis to the suboesophageal zone (SEZ), suggesting integration of olfactory and gustatory signals occurs in this brain region...
October 3, 2016: Nature Communications
Immacolata Iovinella, Liping Ban, Limei Song, Paolo Pelosi, Francesca Romana Dani
In arthropods, the large majority of studies on olfaction have been focused on insects, where most of the proteins involved have been identified. In particular, chemosensing in insects relies on two families of membrane receptors, olfactory/gustatory receptors (ORs/GRs) and ionotropic receptors (IRs), and two classes of soluble proteins, odorant-binding proteins (OBPs) and chemosensory proteins (CSPs). In other arthropods, such as ticks and mites, only IRs have been identified, while genes encoding for OBPs and CSPs are absent...
September 29, 2016: Insect Biochemistry and Molecular Biology
Andrew P Bantel, Charles R Tessier
Olfactory and gustatory perception of the environment is vital for animal survival. The most obvious application of these chemosenses is to be able to distinguish good food sources from potentially dangerous food sources. Gustation requires physical contact with a chemical compound which is able to signal through taste receptors that are expressed on the surface of neurons. In insects, these gustatory neurons can be located across the animal's body allowing taste to play an important role in many different behaviors...
2016: Journal of Visualized Experiments: JoVE
Xing Ge, Tiantao Zhang, Zhenying Wang, Kanglai He, Shuxiong Bai
The yellow peach moth, Conogethes punctiferalis, is an extremely important polyphagous insect in Asia. The chemosensory systems of moth play an important role in detecting food, oviposition sites and mate attraction. Several antennal chemosensory receptors are involved in odor detection. Our study aims to identify chemosensory receptor genes for potential applications in behavioral responses of yellow peach moth. By transcriptomic analysis of male and female antennae, 83 candidate chemosensory receptors, including 62 odorant receptors, 11 ionotropic receptors and 10 gustatory receptors were identified...
2016: Scientific Reports
Yong Taek Jeong, Soo Min Oh, Jaewon Shim, Jeong Taeg Seo, Jae Young Kwon, Seok Jun Moon
Animals discriminate nutritious food from toxic substances using their sense of taste. Since taste perception requires taste receptor cells to come into contact with water-soluble chemicals, it is a form of contact chemosensation. Concurrent with that contact, mechanosensitive cells detect the texture of food and also contribute to the regulation of feeding. Little is known, however, about the extent to which chemosensitive and mechanosensitive circuits interact. Here, we show Drosophila prefers soft food at the expense of sweetness and that this preference requires labellar mechanosensory neurons (MNs) and the mechanosensory channel Nanchung...
September 19, 2016: Nature Communications
Sebastian Hückesfeld, Marc Peters, Michael J Pankratz
Bitter is a taste modality associated with toxic substances evoking aversive behaviour in most animals, and the valence of different taste modalities is conserved between mammals and Drosophila. Despite knowledge gathered in the past on the peripheral perception of taste, little is known about the identity of taste interneurons in the brain. Here we show that hugin neuropeptide-containing neurons in the Drosophila larval brain are necessary for avoidance behaviour to caffeine, and when activated, result in cessation of feeding and mediates a bitter taste signal within the brain...
2016: Nature Communications
Youngnam Kang, Hajime Sato, Mitsuru Saito, Dong Xu Yin, Sook Kyung Park, Seog Bae Oh, Yong Chul Bae, Hiroki Toyoda
Anandamide (AEA) and N-oleoylethanolamine (OEA) are produced in the intestine and brain during fasting and satiety, respectively. Subsequently, AEA facilitates food intake via activation of cannabinoid type-1 receptors (CB1Rs) while OEA decreases food intake via activation of peroxisome proliferator-activated receptor-α (PPARα) and/or G-protein-coupled receptor 119 (GPR119). Neuronal activity in the gastrointestinal region of the autonomic insula (GI-Au-I) that rostrally adjoins the gustatory insula (Gu-I) increases during fasting, enhancing appetite while umami and sweet taste sensations in Gu-I enhances appetite in GI-Au-I, strongly suggesting the presence of a neural interaction between the Gu-I and GI-Au-I which changes depending on the concentrations of AEA and OEA...
2016: Scientific Reports
John R Shorter, Lauren M Dembeck, Logan J Everett, Tatiana V Morozova, Gunjan H Arya, Lavanya Turlapati, Genevieve E St Armour, Coby Schal, Trudy F C Mackay, Robert R H Anholt
Social interactions in insects are driven by conspecific chemical signals that are detected via olfactory and gustatory neurons. Odorant binding proteins (Obps) transport volatile odorants to chemosensory receptors, but their effects on behaviors remain poorly characterized. Here, we report that RNAi knockdown of Obp56h gene expression in Drosophila melanogaster enhances mating behavior by reducing courtship latency. The change in mating behavior that results from inhibition of Obp56h expression is accompanied by significant alterations in cuticular hydrocarbon (CHC) composition, including reduction in 5-tricosene (5-T), an inhibitory sex pheromone produced by males that increases copulation latency during courtship...
October 13, 2016: G3: Genes—Genomes—Genetics
Anthi A Apostolopoulou, Saskia Köhn, Bernhard Stehle, Michael Lutz, Alexander Wüst, Lorena Mazija, Anna Rist, C Giovanni Galizia, Alja Lüdke, Andreas S Thum
The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal, and ventral organ). However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment...
2016: Frontiers in Cellular Neuroscience
Isobel Eyres, Ludovic Duvaux, Karim Gharbi, Rachel Tucker, David Hopkins, Jean-Christophe Simon, Julia Ferrari, Carole M Smadja, Roger K Butlin
Host-associated races of phytophagous insects provide a model for understanding how adaptation to a new environment can lead to reproductive isolation and speciation, ultimately enabling us to connect barriers to gene flow to adaptive causes of divergence. The pea aphid (Acyrthosiphon pisum) comprises host-races specialising on legume species, and provides a unique system for examining the early stages of diversification along a gradient of genetic and associated adaptive divergence. As host-choice produces assortative mating, understanding the underlying mechanisms of choice will contribute directly to understanding of speciation...
August 23, 2016: Molecular Ecology
Ping Hu, Jing Tao, Mingming Cui, Chenglong Gao, Pengfei Lu, Youqing Luo
BACKGROUND: Eogystia hippophaecolus (Hua et al.) (Lepidoptera: Cossidae) is the major threat to seabuckthorn plantations in China. Specific and highly efficient artificial sex pheromone traps was developed and used to control it. However, the molecular basis for the pheromone recognition is not known. So we established the antennal transcriptome of E. hippophaecolus and characterized the expression profiles of odorant binding proteins. These results establish and improve the basis knowledge of the olfactory receptive system, furthermore provide a theoretical basis for the development of new pest control method...
2016: BMC Genomics
Paul V Hickner, Chissa L Rivaldi, Cole M Johnson, Madhura Siddappaji, Gregory J Raster, Zainulabeuddin Syed
BACKGROUND: Drosophila suzukii differs from other melanogaster group members in their proclivity for laying eggs in fresh fruit rather than in fermenting fruits. Olfaction and gustation play a critical role during insect niche formation, and these senses are largely mediated by two important receptor families: olfactory and gustatory receptors (Ors and Grs). Earlier work from our laboratory has revealed how the olfactory landscape of D. suzukii is dominated by volatiles derived from its unique niche...
2016: BMC Genomics
M Levanti, B Randazzo, E Viña, G Montalbano, O Garcia-Suarez, A Germanà, J A Vega, F Abbate
Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others...
September 2016: Annals of Anatomy, Anatomischer Anzeiger: Official Organ of the Anatomische Gesellschaft
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"