Read by QxMD icon Read

ppk drosophila

Wijeong Jang, Minwoo Baek, Yeon Soo Han, Changsoo Kim
BACKGROUND: Nociceptive sensitization is an increase in pain perception in response to stimulus. Following brief irradiation of Drosophila larvae with UV, nociceptive sensitization occurs in class IV multiple dendritic (mdIV) neurons, which are polymodal sensory nociceptors. Diverse signaling pathways have been identified that mediate nociceptive sensitization in mdIV neurons, including TNF, Hedgehog, BMP, and Tachykinin, yet the underlying mechanisms are not completely understood. RESULTS: Here we report that duox heterozygous mutant larvae, which have normal basal nociception, exhibit an attenuated hypersensitivity response to heat and mechanical force following UV irradiation...
March 14, 2018: Molecular Brain
Do-Hyoung Kim, Young-Joon Kim, Michael E Adams
Fluid clearance from the respiratory system during developmental transitions is critically important for achieving optimal gas exchange in animals. During insect development from embryo to adult, airway clearance occurs episodically each time the molt is completed by performance of the ecdysis sequence, coordinated by a peptide-signaling cascade initiated by ecdysis-triggering hormone (ETH). We find that the neuropeptide Kinin (also known as Drosokinin or Leukokinin) is required for normal respiratory fluid clearance or "tracheal air-filling" in Drosophila larvae...
February 13, 2018: Proceedings of the National Academy of Sciences of the United States of America
Anna Rist, Andreas S Thum
In Drosophila melanogaster larvae, the prime site of external taste reception is the terminal organ (TO). Though investigation on the TO's implications in taste perception has been expanding rapidly, the sensilla of the TO have been essentially unexplored. In this study, we performed a systematic anatomical and molecular analysis of the TO. We precisely define morphological types of TO sensilla taking advantage of volume electron microscopy and 3D image analysis. We corroborate the presence of five external types of sensilla: papilla, pit, spot, knob, and modified papilla...
December 15, 2017: Journal of Comparative Neurology
Alexis Hill, Xingguo Zheng, Xiling Li, Ross McKinney, Dion Dickman, Yehuda Ben-Shahar
The protein family of degenerin/epithelial sodium channels (DEG/ENaCs) is composed of diverse animal-specific, non-voltage-gated ion channels that play important roles in regulating cationic gradients across epithelial barriers. Some family members are also enriched in neural tissues in both vertebrates and invertebrates. However, the specific neurophysiological functions of most DEG/ENaC-encoding genes remain poorly understood. The fruit fly Drosophila melanogaster is an excellent model for deciphering the functions of DEG/ENaC genes because its genome encodes an exceptionally large number of DEG/ENaC subunits termed pickpocket (ppk) 1-31 Here we demonstrate that ppk29 contributes specifically to the postsynaptic modulation of excitatory synaptic transmission at the larval neuromuscular junction...
March 22, 2017: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Hyunjin Lee, Hyun Woo Choi, Chen Zhang, Zee-Yong Park, Young-Joon Kim
During copulation, male Drosophila transfers Sex Peptide (SP) to females where it acts on internal sensory neurons expressing pickpocket (ppk). These neurons induce a post-mating response (PMR) that includes elevated egg-laying and refractoriness to re-mating. Exactly how ppk neurons regulate the different aspects of the PMR, however, remains unclear. Here, we identify a small subset of the ppk neurons which requires expression of a pre-mRNA splicing factor CG3542 for egg-laying, but not refractoriness to mating...
July 2016: Molecules and Cells
Ryan M Joseph, John R Carlson
Chemoreception is essential for survival. Feeding, mating, and avoidance of predators depend on detection of sensory cues. Drosophila contains diverse families of chemoreceptors that detect odors, tastants, pheromones, and noxious stimuli, including receptors of the odor receptor (Or), gustatory receptor (Gr), ionotropic receptor (IR), Pickpocket (Ppk), and Trp families. We consider recent progress in understanding chemoreception in the fly, including the identification of new receptors, the discovery of novel biological functions for receptors, and the localization of receptors in unexpected places...
December 2015: Trends in Genetics: TIG
Erica Gene Freeman, Anupama Dahanukar
Drosophila is a powerful model in which to study the molecular and cellular basis of taste coding. Flies sense tastants via populations of taste neurons that are activated by compounds of distinct categories. The past few years have borne witness to studies that define the properties of taste neurons, identifying functionally distinct classes of sweet and bitter taste neurons that express unique subsets of gustatory receptor (Gr) genes, as well as water, salt, and pheromone sensing neurons that express members of the pickpocket (ppk) or ionotropic receptor (Ir) families...
October 2015: Current Opinion in Neurobiology
Frank W Avila, Alexandra L Mattei, Mariana F Wolfner
The storage of sperm in mated females is important for efficient reproduction. After sperm are transferred to females during mating, they need to reach and enter into the site(s) of storage, be maintained viably within storage, and ultimately be released from storage to fertilize eggs. Perturbation of these events can have drastic consequences on fertility. In Drosophila melanogaster, females store sperm for up to 2 weeks after a single mating. For sperm to be released normally from storage, Drosophila females need to receive the seminal fluid protein (SFP) sex peptide (SP) during mating...
May 2015: Journal of Insect Physiology
Yanmeng Guo, Yuping Wang, Qingxiu Wang, Zuoren Wang
In Drosophila larvae, the class IV dendritic arborization (da) neurons are polymodal nociceptors. Here, we show that ppk26 (CG8546) plays an important role in mechanical nociception in class IV da neurons. Our immunohistochemical and functional results demonstrate that ppk26 is specifically expressed in class IV da neurons. Larvae with mutant ppk26 showed severe behavioral defects in a mechanical nociception behavioral test but responded to noxious heat stimuli comparably to wild-type larvae. In addition, functional studies suggest that ppk26 and ppk (also called ppk1) function in the same pathway, whereas piezo functions in a parallel pathway...
November 20, 2014: Cell Reports
Stephanie E Mauthner, Richard Y Hwang, Amanda H Lewis, Qi Xiao, Asako Tsubouchi, Yu Wang, Ken Honjo, J H Pate Skene, Jörg Grandl, W Daniel Tracey
The Drosophila gene pickpocket (ppk) encodes an ion channel subunit of the degenerin/epithelial sodium channel (DEG/ENaC) family. PPK is specifically expressed in nociceptive, class IV multidendritic (md) neurons and is functionally required for mechanical nociception responses. In this study, in a genome-wide genetic screen for other ion channel subunits required for mechanical nociception, we identify a gene that we name balboa (also known as CG8546, ppk26). Interestingly, the balboa locus encodes a DEG/ENaC ion channel subunit highly similar in amino acid sequence to PPK...
December 15, 2014: Current Biology: CB
Vinoy Vijayan, Rob Thistle, Tong Liu, Elena Starostina, Claudio W Pikielny
As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neurons with complementary response profiles; one neuron detects female pheromones that stimulate male courtship, the other detects male pheromones that inhibit male-male courtship...
March 2014: PLoS Genetics
Carolina Rezával, Tetsuya Nojima, Megan C Neville, Andrew C Lin, Stephen F Goodwin
Mating elicits profound behavioral and physiological changes in many species that are crucial for reproductive success. After copulation, Drosophila melanogaster females reduce their sexual receptivity and increase egg laying [1, 2]. Transfer of male sex peptide (SP) during copulation mediates these postmating responses [1, 3-6] via SP sensory neurons in the uterus defined by coexpression of the proprioceptive neuronal marker pickpocket (ppk) and the sex-determination genes doublesex (dsx) and fruitless (fru) [7-9]...
March 31, 2014: Current Biology: CB
Carolina Rezával, Hania J Pavlou, Anthony J Dornan, Yick-Bun Chan, Edward A Kravitz, Stephen F Goodwin
BACKGROUND: After mating, Drosophila females undergo a remarkable phenotypic switch resulting in decreased sexual receptivity and increased egg laying. Transfer of male sex peptide (SP) during copulation mediates these postmating responses via sensory neurons that coexpress the sex-determination gene fruitless (fru) and the proprioceptive neuronal marker pickpocket (ppk) in the female reproductive system. Little is known about the neuronal pathways involved in relaying SP-sensory information to central circuits and how these inputs are processed to direct female-specific changes that occur in response to mating...
July 10, 2012: Current Biology: CB
Robert Thistle, Peter Cameron, Azeen Ghorayshi, Lisa Dennison, Kristin Scott
The elaborate courtship ritual of Drosophila males is dictated by neural circuitry established by the transcription factor Fruitless and triggered by sex-specific sensory cues. Deciphering the role of different stimuli in driving courtship behavior has been limited by the inability to selectively target appropriate sensory classes. Here, we identify two ion channel genes belonging to the degenerin/epithelial sodium channel/pickpocket (ppk) family, ppk23 and ppk29, which are expressed in fruitless-positive neurons on the legs and are essential for courtship...
May 25, 2012: Cell
Sung Eun Kim, Bertrand Coste, Abhishek Chadha, Boaz Cook, Ardem Patapoutian
Transduction of mechanical stimuli by receptor cells is essential for senses such as hearing, touch and pain. Ion channels have a role in neuronal mechanotransduction in invertebrates; however, functional conservation of these ion channels in mammalian mechanotransduction is not observed. For example, no mechanoreceptor potential C (NOMPC), a member of transient receptor potential (TRP) ion channel family, acts as a mechanotransducer in Drosophila melanogaster and Caenorhabditis elegans; however, it has no orthologues in mammals...
March 8, 2012: Nature
Eswar Prasad R Iyer, Daniel N Cox
The dendritic arborization (da) neurons of the Drosophila peripheral nervous system (PNS) provide an excellent model system in which to investigate the molecular mechanisms underlying class-specific dendrite morphogenesis. To facilitate molecular analyses of class-specific da neuron development, it is vital to obtain these cells in a pure population. Although a range of different cell, and tissue-specific RNA isolation techniques exist for Drosophila cells, including magnetic bead based cell purification, Fluorescent Activated Cell Sorting (FACS), and RNA binding protein based strategies, none of these methods can be readily utilized for isolating single or multiple class-specific Drosophila da neurons with a high degree of spatial precision...
2010: Journal of Visualized Experiments: JoVE
Carlos Ribeiro, Barry J Dickson
Animals often decide between alternative actions according to their current needs, and hence the value they assign to each of the competing options. This process is of special relevance during nutrient balancing, in which animals choose between different food sources according to their current nutritional state. How such value-based decision making is implemented at the molecular and neuronal level in the brain is not well understood. Here we describe Drosophila melanogaster food choice as a genetically tractable model to study value-based decision making in the context of nutrient balancing...
June 8, 2010: Current Biology: CB
Lixian Zhong, Richard Y Hwang, W Daniel Tracey
Highly branched class IV multidendritic sensory neurons of the Drosophila larva function as polymodal nociceptors that are necessary for behavioral responses to noxious heat (>39 degrees C) or noxious mechanical (>30 mN) stimuli. However, the molecular mechanisms that allow these cells to detect both heat and force are unknown. Here, we report that the pickpocket (ppk) gene, which encodes a Degenerin/Epithelial Sodium Channel (DEG/ENaC) subunit, is required for mechanical nociception but not thermal nociception in these sensory cells...
March 9, 2010: Current Biology: CB
Eswar Prasad R Iyer, Srividya Chandramouli Iyer, Mikolaj J Sulkowski, Daniel N Cox
The Drosophila peripheral nervous system (PNS) is a powerful model for investigating the complex processes of neuronal development and dendrite morphogenesis at the functional and molecular levels. To aid in these analyses, we have developed a strategy for the isolation of a subclass of PNS neurons called dendritic arborization (da) neurons that have been widely used for studying dendrite morphogenesis. These neurons are very difficult to isolate as a pure population, due in part to their extremely low occurrence and their difficult-to-reach location below the tough chitinous larval cuticle...
2009: Journal of Visualized Experiments: JoVE
Chung-Hui Yang, Sebastian Rumpf, Yang Xiang, Michael D Gordon, Wei Song, Lily Y Jan, Yuh-Nung Jan
Mating induces changes in the receptivity and egg-laying behavior in Drosophila females, primarily due to a peptide pheromone called sex peptide which is transferred with the sperm into the female reproductive tract during copulation. Whereas sex peptide is generally believed to modulate fruitless-GAL4-expressing neurons in the central nervous system to produce behavioral changes, we found that six to eight sensory neurons on the reproductive tract labeled by both ppk-GAL4 and fruitless-GAL4 can sense sex peptide to control the induction of postmating behaviors...
February 26, 2009: Neuron
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"