Read by QxMD icon Read

lgr5 inner ear

Q Q He, A Li, M H Wang, X Gao
Stem cell is critical to regeneration of tissue or organ of human. How to promote repair or regeneration in the tissues/organ using its pluripotency is always an important issue. Lgr5-possitive cell is one type of the stem cell-like cells capable of pluripotent differentiation in various tissues/organs of both humans and mice. Current study showed that single or small amount Lgr5-possitive stem cells can grow and form a plurality of organs in 3D culture system, and some organs can present similar biological and physiological properties with the progenitor they were derived...
June 7, 2018: Zhonghua Er Bi Yan Hou Tou Jing Wai Ke za Zhi, Chinese Journal of Otorhinolaryngology Head and Neck Surgery
Yanping Zhang, Luo Guo, Xiaoling Lu, Cheng Cheng, Shan Sun, Wen Li, Liping Zhao, Chuijin Lai, Shasha Zhang, Chenjie Yu, Mingliang Tang, Yan Chen, Renjie Chai, Huawei Li
Hair cell (HC) loss is irreversible because only very limited HC regeneration has been observed in the adult mammalian cochlea. Wnt/β-catenin signaling regulates prosensory cell proliferation and differentiation during cochlear development, and Wnt activation promotes the proliferation of Lgr5+ cochlear HC progenitors in newborn mice. Similar to Lgr5 , Lgr6 is also a Wnt downstream target gene. Lgr6 is reported to be present in adult stem cells in the skin, nail, tongue, lung, and mammary gland, and this protein is very important for adult stem cell maintenance in rapidly proliferating organs...
2018: Frontiers in Molecular Neuroscience
Cheng Cheng, Luo Guo, Ling Lu, Xiaochen Xu, ShaSha Zhang, Junyan Gao, Muhammad Waqas, Chengwen Zhu, Yan Chen, Xiaoli Zhang, Chuanying Xuan, Xia Gao, Mingliang Tang, Fangyi Chen, Haibo Shi, Huawei Li, Renjie Chai
Cochlear supporting cells (SCs) have been shown to be a promising resource for hair cell (HC) regeneration in the neonatal mouse cochlea. Previous studies have reported that Lgr5+ SCs can regenerate HCs both in vitro and in vivo and thus are considered to be inner ear progenitor cells. Lgr5+ progenitors are able to regenerate more HCs than Lgr5- SCs, and it is important to understand the mechanism behind the proliferation and HC regeneration of these progenitors. Here, we isolated Lgr5+ progenitors and Lgr5- SCs from Lgr5-EGFP-CreERT2/Sox2-CreERT2/Rosa26-tdTomato mice via flow cytometry...
2017: Frontiers in Molecular Neuroscience
Will J McLean, Dalton T McLean, Ruth Anne Eatock, Albert S B Edge
Disorders of hearing and balance are most commonly associated with damage to cochlear and vestibular hair cells or neurons. Although these cells are not capable of spontaneous regeneration, progenitor cells in the hearing and balance organs of the neonatal mammalian inner ear have the capacity to generate new hair cells after damage. To investigate whether these cells are restricted in their differentiation capacity, we assessed the phenotypes of differentiated progenitor cells isolated from three compartments of the mouse inner ear - the vestibular and cochlear sensory epithelia and the spiral ganglion - by measuring electrophysiological properties and gene expression...
December 1, 2016: Development
Yanping Zhang, Yan Chen, Wenli Ni, Luo Guo, Xiaoling Lu, Liman Liu, Wen Li, Shan Sun, Lei Wang, Huawei Li
The Wnt/β-catenin signaling pathway plays important roles in mammalian inner ear development. Lgr5, one of the downstream target genes of the Wnt/β-catenin signaling pathway, has been reported to be a marker for inner ear hair cell progenitors. Lgr6 shares approximately 50% sequence homology with Lgr5 and has been identified as a stem cell marker in several organs. However, the detailed expression profiles of Lgr6 have not yet been investigated in the mouse inner ear. Here, we first used Lgr6-EGFP-Ires-CreERT2 mice to examine the spatiotemporal expression of Lgr6 protein in the cochlear duct during embryonic and postnatal development...
2015: Frontiers in Cellular Neuroscience
Tian Wang, Renjie Chai, Grace S Kim, Nicole Pham, Lina Jansson, Duc-Huy Nguyen, Bryan Kuo, Lindsey A May, Jian Zuo, Lisa L Cunningham, Alan G Cheng
Recruitment of endogenous progenitors is critical during tissue repair. The inner ear utricle requires mechanosensory hair cells (HCs) to detect linear acceleration. After damage, non-mammalian utricles regenerate HCs via both proliferation and direct transdifferentiation. In adult mammals, limited transdifferentiation from unidentified progenitors occurs to regenerate extrastriolar Type II HCs. Here we show that HC damage in neonatal mouse utricle activates the Wnt target gene Lgr5 in striolar supporting cells...
April 7, 2015: Nature Communications
Renjie Chai, Bryan Kuo, Tian Wang, Eric J Liaw, Anping Xia, Taha A Jan, Zhiyong Liu, Makoto M Taketo, John S Oghalai, Roeland Nusse, Jian Zuo, Alan G Cheng
Inner ear hair cells are specialized sensory cells essential for auditory function. Previous studies have shown that the sensory epithelium is postmitotic, but it harbors cells that can behave as progenitor cells in vitro, including the ability to form new hair cells. Lgr5, a Wnt target gene, marks distinct supporting cell types in the neonatal cochlea. Here, we tested the hypothesis that Lgr5(+) cells are Wnt-responsive sensory precursor cells. In contrast to their quiescent in vivo behavior, Lgr5(+) cells isolated by flow cytometry from neonatal Lgr5(EGFP-CreERT2/+) mice proliferated and formed clonal colonies...
May 22, 2012: Proceedings of the National Academy of Sciences of the United States of America
Renjie Chai, Anping Xia, Tian Wang, Taha Adnan Jan, Toshinori Hayashi, Olivia Bermingham-McDonogh, Alan Gi-Lun Cheng
The Wnt signaling pathway is a recurring theme in tissue development and homeostasis. Its specific roles during inner ear development are just emerging, but few studies have characterized Wnt target genes. Lgr5, a member of the G protein-coupled receptor family, is a Wnt target in the gastrointestinal and integumentary systems. Although its function is unknown, its deficiency leads to perinatal lethality due to gastrointestinal distension. In this study, we used a knock-in reporter mouse to examine the spatiotemporal expression of Lgr5 in the cochlear duct during embryonic and postnatal periods...
August 2011: Journal of the Association for Research in Otolaryngology: JARO
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"