Read by QxMD icon Read


Mengzhu Guo, Yun Mu, Dahai Yu, Jing Li, Fengqiang Chen, Baosheng Wei, Shichang Bi, Jia Yu, Feixin Liang
The aim of the present study was to prove that a mouse model closely simulates human oral cancer progression by comparing the expression levels of transforming growth factor (TGF)-β1, E-cadherin, N-cadherin, tumor protein (TP)53, RB1 inducible coiled-coil (RB1CC)1 and hypoxia inducible factor (HIF)-1α at different stages of oral squamous cell carcinoma (OSCC) in humans and mice. The expression levels of TGF-β1, E-cadherin, N-cadherin, TP53, RB1CC1, and HIF-1α were detected by immunohistochemical staining in normal oral mucosa, oral mucosa dysplasia, OSCC primary tumor and carcinoma tissues from lymph node metastases...
February 2018: Oncology Letters
Ji-Man Park, Minchul Seo, Chang Hwa Jung, Douglas Grunwald, Matthew Stone, Neil Michael Otto, Erik Toso, Yeseul Ahn, Michael Kyba, Timothy J Griffin, LeeAnn Higgins, Do-Hyung Kim
ULK1 (unc51-like autophagy activating kinase 1) is a serine/threonine kinase that plays a key role in regulating macroautophagy/autophagy induction in response to amino acid starvation. Despite the recent progress in understanding ULK1 functions, the molecular mechanism by which ULK1 regulates the induction of autophagy remains elusive. In this study, we determined that ULK1 phosphorylates Ser30 of BECN1 (beclin 1) in association with ATG14 (autophagy related 14) but not with UVRAG (UV radiation resistance associated)...
January 9, 2018: Autophagy
Nora Wallot-Hieke, Neha Verma, David Schlütermann, Niklas Berleth, Jana Deitersen, Philip Böhler, Fabian Stuhldreier, Wenxian Wu, Sabine Seggewiß, Christoph Peter, Holger Gohlke, Noboru Mizushima, Björn Stork
Macroautophagy/autophagy is an evolutionarily conserved cellular process whose induction is regulated by the ULK1 protein kinase complex. The subunit ATG13 functions as an adaptor protein by recruiting ULK1, RB1CC1 and ATG101 to a core ULK1 complex. Furthermore, ATG13 directly binds both phospholipids and members of the Atg8 family. The central involvement of ATG13 in complex formation makes it an attractive target for autophagy regulation. Here, we analyzed known interactions of ATG13 with proteins and lipids for their potential modulation of ULK1 complex formation and autophagy induction...
November 26, 2017: Autophagy
Bo Wang, Rekha Iyengar, Xiujie Li-Harms, Joung Hyuck Joo, Christopher Wright, Alfonso Lavado, Linda Horner, Mao Yang, Jun-Lin Guan, Sharon Frase, Douglas R Green, Xinwei Cao, Mondira Kundu
Mammalian ULK1 (unc-51 like kinase 1) and ULK2, Caenorhabditis elegans UNC-51, and Drosophila melanogaster Atg1 are serine/threonine kinases that regulate flux through the autophagy pathway in response to various types of cellular stress. C. elegans UNC-51 and D. melanogaster Atg1 also promote axonal growth and defasciculation; disruption of these genes results in defective axon guidance in invertebrates. Although disrupting ULK1/2 function impairs normal neurite outgrowth in vitro, the role of ULK1 and ULK2 in the developing brain remains poorly characterized...
November 3, 2017: Autophagy
Marwa Matboli, Ahmed E M Azazy, Seham Adel, Miram M Bekhet, Sanaa Eissa
BACKGROUND: We identified and validated novel urinary autophagy markers in diabetic kidney disease (DKD) based on bioinformatics analysis and clinical validation. PATIENTS & METHODS: We retrieved three novel autophagy genes related to DKD from public microarray databases, namely; microtubule-associated protein light chain (MAP1LC3A), WD Repeat Domain, Phosphoinositide Interacting 2 (WIPI2), and RB1-Inducible Coiled-Coil 1 (RB1CC1). Secondly we assessed the expression of the chosen autophagy transcript in urine sediment of 86 patients with DKD and 74 (age and sex matched) controls by reverse transcription quantitative real-time PCR...
October 2017: Journal of Diabetes and its Complications
Jian Xue, Jingwen Xue, Ji Zhang, Dan Li, Lei Jiang
OBJECTIVES: To explore the roles of miR-130b-3p and miR-301b-3p which may regulate Rb1-inducible coiled-coil 1 (Rb1cc1) expression during myogenic differentiation of chicken primary myoblasts. RESULTS: After 4 days of myogenic differentiation, myotubes appeared and after 6 days the cells fused to each other and expression of MyHC could be detected by immunofluorescence staining. TargetScan and RNAhybrid 2.2 showed miR-130b-3p and miR-301b-3p were well complementary with the target site of Rb1cc1 3'-untranslated region (3'-UTR)...
November 2017: Biotechnology Letters
Marwa Matboli, Sanaa Eissa, Doaa Ibrahim, Marwa G A Hegazy, Shalabia S Imam, Eman K Habib
The aim of this study is to evaluate the anti-diabetic nephropathy effect of Caffeic acid and to prove our hypothesis for its mechanism of action that it may occur by reactivation of autophagy pathway via suppression of autophagy regulatory miRNAs. In vivo, high-fat diet and streptozotocin-induced (HFD-STZ) diabetic rats were treated with Caffeic acid once per day for 12 weeks before and after development of diabetic nephropathy. Blood and urine biochemical parameters, autophagy transcripts and their epigenetic regulators together with renal tissue morphology were investigated...
May 23, 2017: Scientific Reports
Shun-Ichi Yamashita, Tomotake Kanki
Mitochondrial autophagy (mitophagy) is thought to be a multi-step pathway wherein mitochondria are first divided into small fragments, which are subsequently recognized by the phagophore. DNM1L (dynamin 1 like) plays a pivotal role in mitochondrial division; however, its role in mitophagy remains controversial. In our recent study, we examined the contribution of DNM1L to mitophagy and showed that mitophagy and mitochondrial division occur even in DNM1L-defective cells. Furthermore, time-lapse imaging of mitophagy showed that DNM1L-independent mitochondrial division occurs concomitantly with autophagosome formation...
May 4, 2017: Autophagy
Pang-Kuo Lo, Yongshu Zhang, Yuan Yao, Benjamin Wolfson, Justine Yu, Shu-Yan Han, Nadire Duru, Qun Zhou
The normal myoepithelium has a tumor-suppressing nature and inhibits the progression of ductal carcinoma in situ (DCIS) into invasive ductal carcinoma (IDC). Conversely, a growing number of studies have shown that tumor-associated myoepithelial cells have a tumor-promoting effect. Moreover, the exact role of tumor-associated myoepithelial cells in the DCIS-to-IDC development remains undefined. To address this, we explored the role of tumor-associated myoepithelial cells in the DCIS-to-IDC progression. We developed a direct coculture system to study the cell-cell interactions between DCIS cells and tumor-associated myoepithelial cells...
July 7, 2017: Journal of Biological Chemistry
Sanaa Eissa, Marwa Matboli, Nahla Awad, Yousif Kotb
We sought to identify and validate a novel urinary autophagy transcript signature in patients with bladder cancer and evaluate its clinical utility. We performed an initial screening for seven autophagy transcript-based panel (autophagy-related protein 12 (ATG12); WD repeat domain, phosphoinositide interacting 2 (WIPI2); FYVE and coiled-coil domain-containing protein 1 (FYCO1); microtubule-associated protein light chain (MAPLC3); RB1-inducible coiled-coil 1 (RB1CC1); tachylectin-II-like beta-propeller domain 1 (TECPR1); and Unc-51-like kinase (ULK1)) that was identified based on bioinformatics analysis followed by SYBR Green-based polymerase chain reaction array validation in paired tissue and urine samples...
April 2017: Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine
Xiaoyi Chen, Jason Clark, Mark Wunderlich, Cuiqing Fan, Ashley Davis, Song Chen, Jun-Lin Guan, James C Mulloy, Ashish Kumar, Yi Zheng
Recently, macroautophagy/autophagy has emerged as a promising target in various types of solid tumor treatment. However, the impact of autophagy on acute myeloid leukemia (AML) maintenance and the validity of autophagy as a viable target in AML therapy remain unclear. Here we show that Kmt2a/Mll-Mllt3/Af9 AML (MA9-AML) cells have high autophagy flux compared with normal bone marrow cells, but autophagy-specific targeting, either through Rb1cc1-disruption to abolish autophagy initiation, or via Atg5-disruption to prevent phagophore (the autophagosome precursor) membrane elongation, does not affect the growth or survival of MA9-AML cells, either in vitro or in vivo...
May 4, 2017: Autophagy
Andreas Buch Møller, Ulla Kampmann, Jakob Hedegaard, Kasper Thorsen, Iver Nordentoft, Mikkel Holm Vendelbo, Niels Møller, Niels Jessen
This case-control study was designed to investigate the gene expression profile in skeletal muscle from severely insulin resistant patients with long-standing type 2 diabetes (T2D), and to determine associated signaling pathways. Gene expression profiles were examined by whole transcriptome, strand-specific RNA-sequencing and associated signaling was determined by western blot. We identified 117 differentially expressed gene transcripts. Ingenuity Pathway Analysis related these differences to abnormal muscle morphology and mitochondrial dysfunction...
March 2, 2017: Scientific Reports
Liang Ouyang, Lan Zhang, Leilei Fu, Bo Liu
ULK1 (unc-51 like autophagy activating kinase 1) is well known to be required to initiate the macroautophagy/autophagy process, and thus activation of ULK1-modulating autophagy/autophagy-associated cell death (ACD) may be a possible therapeutic strategy in triple negative breast cancer (TNBC). Here, our integrated The Cancer Genome Atlas (TCGA) data set, tissue microarray-based analyses and multiple biologic evaluations together demonstrate a new small-molecule activator of ULK1 for better understanding of how ULK1, the mammalian homolog of yeast Atg1, as a potential drug target can regulate ACD by the ULK complex (ULK1-ATG13-RB1CC1/FIP200-ATG101), as well as other possible ULK1 interactors, including ATF3, RAD21 and CASP3/caspase3 in TNBC...
April 3, 2017: Autophagy
Jiangquan Liao, Benjun Wei, Hengwen Chen, Yongmei Liu, Jie Wang
BACKGROUND: Xuesaitong soft capsule (XST) which consists of panax notoginseng saponin (PNS) has been used to treat ischemic cerebrovascular diseases in China. The therapeutic mechanism of XST has not been elucidated yet from prospective of genomics and bioinformatics. METHODS: A transcriptome analysis was performed to review series concerning middle cerebral artery occlusion (MCAO) rat model and XST intervention after MCAO from Gene Expression Omnibus (GEO) database...
2016: American Journal of Translational Research
Shufeng Li, Qian Qiang, Haitao Shan, Minke Shi, Guangming Gan, Fang Ma, Baojun Chen
AIMS: RB1CC1/FIP200 was essential for autophagosome formation. Therefore, RB1CC1/FIP200 cellular levels are critical for the activation of the autophagy pathways. Following the screen of miRNAs affecting RB1CC1/FIP200 level and rapamycin-induced autophagy, we discovered miR-20a and miR-20b could regulate autophagy by targeting RB1CC1/FIP200. MAIN METHODS: Inhibitory effect of miR-20a and 20b on basal and rapamycin-stimulated autophagy was demonstrated using various autophagic tests including GFP-LC3 puncta analysis, LC3II/LC3I gel shift and TEM observation...
February 15, 2016: Life Sciences
Li-Yi Zhang, Jian-Lin Wu, Hai-Bo Qiu, Sui-Sui Dong, Ying-Hui Zhu, Victor Ho-Fun Lee, Yan-Ru Qin, Yan Li, Juan Chen, Hai-Bo Liu, Jiong Bi, Stephanie Ma, Xin-Yuan Guan, Li Fu
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy; its mechanisms of development and progression are poorly understood. By high-throughput transcriptome sequencing (RNA-Seq) profiling of three pairs of primary ESCCs and their corresponding non-tumorous tissues, we identified that prostate stem cell antigen (PSCA), a gene that encodes a glycosylphosphatidylinositol-anchored protein, is significantly downregulated in ESCC. Here, we reported decreased expression of PSCA in 188/218 (86.2%) of primary ESCC cases and was negatively regulated by its transcription factor sex-determining region Y-box5 that was significantly associated with the poor differentiation (P = 0...
March 2016: Carcinogenesis
Hana Popelka, Daniel J Klionsky
ULK1 and ATG13 assemble with RB1CC1/FIP200 and ATG101 to form a macroautophagy (hereafter autophagy) induction (ULK1) complex in higher eukaryotes. The yeast counterpart, the Atg1 complex, is comprised of Atg1 and Atg13 (ULK1 and ATG13 homologs), Atg17 (a proposed functional homolog of RB1CC1), and either the Atg101 subunit (in Schizosaccharomyces pombe) or the Atg29-Atg31 heterodimer (in Saccharomyces cerevisiae). With mutual exclusivity of, and no detectable homology between, the Atg29-Atg31 dimer and Atg101, knowledge about the roles of these proteins in autophagy induction is an important piece in the puzzle of understanding the molecular mechanism of autophagy initiation...
November 2, 2015: Autophagy
Nora Hieke, Antje S Löffler, Takeshi Kaizuka, Niklas Berleth, Philip Böhler, Stefan Drießen, Fabian Stuhldreier, Olena Friesen, Kaivon Assani, Katharina Schmitz, Christoph Peter, Britta Diedrich, Jörn Dengjel, Petter Holland, Anne Simonsen, Sebastian Wesselborg, Noboru Mizushima, Björn Stork
Autophagy describes an intracellular process responsible for the lysosome-dependent degradation of cytosolic components. The ULK1/2 complex comprising the kinase ULK1/2 and the accessory proteins ATG13, RB1CC1, and ATG101 has been identified as a central player in the autophagy network, and it represents the main entry point for autophagy-regulating kinases such as MTOR and AMPK. It is generally accepted that the ULK1 complex is constitutively assembled independent of nutrient supply. Here we report the characterization of the ATG13 region required for the binding of ULK1/2...
2015: Autophagy
Chandra B Lebovitz, A Gordon Robertson, Rodrigo Goya, Steven J Jones, Ryan D Morin, Marco A Marra, Sharon M Gorski
Aberrant activation or disruption of autophagy promotes tumorigenesis in various preclinical models of cancer, but whether the autophagy pathway is a target for recurrent molecular alteration in human cancer patient samples is unknown. To address this outstanding question, we surveyed 211 human autophagy-associated genes for tumor-related alterations to DNA sequence and RNA expression levels and examined their association with patient survival outcomes in multiple cancer types with sequence data from The Cancer Genome Atlas consortium...
2015: Autophagy
Stefan Drießen, Niklas Berleth, Olena Friesen, Antje S Löffler, Philip Böhler, Nora Hieke, Fabian Stuhldreier, Christoph Peter, Kay O Schink, Sebastian W Schultz, Harald Stenmark, Petter Holland, Anne Simonsen, Sebastian Wesselborg, Björn Stork
Autophagy represents an intracellular degradation process which is involved in both regular cell homeostasis and disease settings. In recent years, the molecular machinery governing this process has been elucidated. The ULK1 kinase complex consisting of the serine/threonine protein kinase ULK1 and the adapter proteins ATG13, RB1CC1, and ATG101, is centrally involved in the regulation of autophagy initiation. This complex is in turn regulated by the activity of different nutrient- or energy-sensing kinases, including MTOR, AMPK, and AKT...
2015: Autophagy
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"