Read by QxMD icon Read

thalamocortical network

Samantha I Cunningham, Dardo Tomasi, Nora D Volkow
Neuroimaging studies have identified functional interactions between the thalamus, precuneus, and default mode network (DMN) in studies of consciousness. However, less is known about the structural connectivity of the precuneus and thalamus to regions within the DMN. We used diffusion tensor imaging (DTI) to parcellate the precuneus and thalamus based on their probabilistic white matter connectivity to each other and DMN regions of interest (ROIs) in 37 healthy subjects from the Human Connectome Database. We further assessed resting-state functional connectivity (RSFC) among the precuneus, thalamus, and DMN ROIs...
October 14, 2016: Human Brain Mapping
Jian-Fang Zhou, Wu-Jie Yuan, Zhao Zhou
Microsaccades are involuntary and very small eye movements during fixation. Recently, the microsaccade-related neural dynamics have been extensively investigated both in experiments and by constructing neural network models. Experimentally, microsaccades also exhibit many behavioral properties. It's well known that the behavior properties imply the underlying neural dynamical mechanisms, and so are determined by neural dynamics. The behavioral properties resulted from neural responses to microsaccades, however, are not yet understood and are rarely studied theoretically...
October 14, 2016: Scientific Reports
Antonio G Zippo, Maurizio Valente, Gian Carlo Caramenti, Gabriele E M Biella
Chronic pain (CP) is a condition with a large repertory of clinical signs and symptoms with diverse expressions. Though widely analyzed, an appraisal at the level of single neuron and neuronal networks in CP is however missing. The present research proposes an empirical and theoretic framework which identifies a complex network correlate nested in the somatosensory thalamocortical (TC) circuit in diverse CP models. In vivo simultaneous extracellular neuronal electrophysiological high-density recordings have been performed from the TC circuit in rats...
October 13, 2016: Scientific Reports
Kush Paul, Lawrence J Cauller, Daniel A Llano
Sleep and wakefulness are characterized by distinct states of thalamocortical network oscillations. The complex interplay of ionic conductances within the thalamo-reticular-cortical network give rise to these multiple modes of activity and a rapid transition exists between these modes. To better understand this transition, we constructed a simplified computational model based on physiological recordings and physiologically realistic parameters of a three-neuron network containing a thalamocortical cell, a thalamic reticular neuron, and a corticothalamic cell...
2016: Frontiers in Computational Neuroscience
C D Balaban
Neuronal networks that are linked to the peripheral vestibular system contribute to gravitoinertial sensation, balance control, eye movement control, and autonomic function. Ascending connections to the limbic system and cerebral cortex are also important for motion perception and threat recognition, and play a role in comorbid balance and anxiety disorders. The vestibular system also shows remarkable plasticity, termed vestibular compensation. Activity in these networks is regulated by an interaction between: (1) intrinsic neurotransmitters of the inner ear, vestibular nerve, and vestibular nuclei; (2) neurotransmitters associated with thalamocortical and limbic pathways that receive projections originating in the vestibular nuclei; and (3) locus coeruleus and raphe (serotonergic and nonserotonergic) projections that influence the latter components...
2016: Handbook of Clinical Neurology
Takafumi Arakaki, Séverine Mahon, Stéphane Charpier, Arthur Leblois, David Hansel
UNLABELLED: Absence seizures are characterized by brief interruptions of conscious experience accompanied by oscillations of activity synchronized across many brain areas. Although the dynamics of the thalamocortical circuits are traditionally thought to underlie absence seizures, converging experimental evidence supports the key involvement of the basal ganglia (BG). In this theoretical work, we argue that the BG are essential for the maintenance of absence seizures. To this end, we combine analytical calculations with numerical simulations to investigate a computational model of the BG-thalamo-cortical network...
September 14, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Soo-Eun Chang, Ho Ming Chow, Elizabeth A Wieland, J Devin McAuley
Our ability to perceive and produce rhythmic patterns in the environment supports fundamental human capacities ranging from music and language processing to the coordination of action. This article considers whether spontaneous correlated brain activity within a basal ganglia-thalamocortical (rhythm) network is associated with individual differences in auditory rhythm discrimination. Moreover, do children who stutter with demonstrated deficits in rhythm perception have weaker links between rhythm network functional connectivity and rhythm discrimination? All children in the study underwent a resting-state fMRI session, from which functional connectivity measures within the rhythm network were extracted from spontaneous brain activity...
2016: NeuroImage: Clinical
Julien Guy, Alexandra Sachkova, Martin Möck, Mirko Witte, Robin J Wagener, Jochen F Staiger
Layer IV (LIV) of the rodent somatosensory cortex contains the somatotopic barrel field. Barrels receive much of the sensory input to the cortex through innervation by thalamocortical axons from the ventral posteromedial nucleus. In the reeler mouse, the absence of cortical layers results in the formation of mispositioned barrel-equivalent clusters of LIV fated neurons. Although functional imaging suggests that sensory input activates the cortex, little is known about the cellular and synaptic properties of identified excitatory neurons of the reeler cortex...
September 12, 2016: Cerebral Cortex
Andreas Ranft, Daniel Golkowski, Tobias Kiel, Valentin Riedl, Philipp Kohl, Guido Rohrer, Joachim Pientka, Sebastian Berger, Alexander Thul, Max Maurer, Christine Preibisch, Claus Zimmer, George A Mashour, Eberhard F Kochs, Denis Jordan, Rüdiger Ilg
BACKGROUND: The neural correlates of anesthetic-induced unconsciousness have yet to be fully elucidated. Sedative and anesthetic states induced by propofol have been studied extensively, consistently revealing a decrease of frontoparietal and thalamocortical connectivity. There is, however, less understanding of the effects of halogenated ethers on functional brain networks. METHODS: The authors recorded simultaneous resting-state functional magnetic resonance imaging and electroencephalography in 16 artificially ventilated volunteers during sevoflurane anesthesia at burst suppression and 3 and 2 vol% steady-state concentrations for 700 s each to assess functional connectivity changes compared to wakefulness...
November 2016: Anesthesiology
Alessandro Barardi, Jordi Garcia-Ojalvo, Alberto Mazzoni
The thalamus is a key brain element in the processing of sensory information. During the sleep and awake states, this brain area is characterized by the presence of two distinct dynamical regimes: in the sleep state activity is dominated by spindle oscillations (7 - 15 Hz) weakly affected by external stimuli, while in the awake state the activity is primarily driven by external stimuli. Here we develop a simple and computationally efficient model of the thalamus that exhibits two dynamical regimes with different information-processing capabilities, and study the transition between them...
2016: PloS One
Manuela Cerina, Venu Narayanan, Kerstin Göbel, Stefan Bittner, Tobias Ruck, Patrick Meuth, Alexander M Herrmann, Martin Stangel, Viktoria Gudi, Thomas Skripuletz, Thiemo Daldrup, Heinz Wiendl, Thomas Seidenbecher, Petra Ehling, Christoph Kleinschnitz, Hans-Christian Pape, Thomas Budde, Sven G Meuth
Myelin loss is a severe pathological hallmark common to a number of neurodegenerative diseases, including multiple sclerosis (MS). Demyelination in the central nervous system appears in the form of lesions affecting both white and gray matter structures. The functional consequences of demyelination on neuronal network and brain function are not well understood. Current therapeutic strategies for ameliorating the course of such diseases usually focus on promoting remyelination, but the effectiveness of these approaches strongly depends on the timing in relation to the disease state...
August 25, 2016: Brain, Behavior, and Immunity
Bao Fu, Yuan Wang, Hao Yang, Tian Yu
Although accumulative evidence indicates that the thalamocortical system is an important target for general anesthetics, the underlying mechanisms of anesthetic action on thalamocortical neurotransmission are not fully understood. The aim of the study is to explore the action of etomidate on glutamatergic and GABAergic transmission in rat thalamocortical slices by using whole cell patch-clamp recording. We found that etomidate mainly prolonged the decay time of spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs), without changing the frequency...
August 26, 2016: Neurochemical Research
Richárd Fiáth, Patrícia Beregszászi, Domonkos Horváth, Lucia Wittner, Arno A A Aarts, Patrick Ruther, Hercules P Neves, Hajnalka Bokor, Laszlo Acsady, István Ulbert
Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. Here, we demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated CMOS electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts...
August 17, 2016: Journal of Neurophysiology
Monica Giraldo-Chica, Neil D Woodward
Brain circuitry underlying cognition, emotion, and perception is abnormal in schizophrenia. There is considerable evidence that the neuropathology of schizophrenia includes the thalamus, a key hub of cortical-subcortical circuitry and an important regulator of cortical activity. However, the thalamus is a heterogeneous structure composed of several nuclei with distinct inputs and cortical connections. Limitations of conventional neuroimaging methods and conflicting findings from post-mortem investigations have made it difficult to determine if thalamic pathology in schizophrenia is widespread or limited to specific thalamocortical circuits...
August 13, 2016: Schizophrenia Research
Duncan J Hodkinson, Sophie L Wilcox, Rosanna Veggeberg, Rodrigo Noseda, Rami Burstein, David Borsook, Lino Becerra
UNLABELLED: For many years, neurobiological theories have emphasized the importance of neuronal oscillations in the emergence of brain function. At the same time, clinical studies have shown that disturbances or irregularities in brain rhythms may relate to various common neurological conditions, including migraine. Increasing evidence suggests that the CNS plays a fundamental role in the predisposition to develop different forms of headache. Here, we present human imaging data that strongly support the presence of abnormal low-frequency oscillations (LFOs) in thalamocortical networks of patients in the interictal phase of migraine...
July 27, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Yan-Gang Sun, Vanessa Rupprecht, Li Zhou, Rajan Dasgupta, Frederik Seibt, Michael Beierlein
UNLABELLED: Acetylcholine (ACh) signaling is involved in a wide range of processes, including arousal, attention, and learning. An increasing number of studies indicate that cholinergic control of these functions is highly deterministic, mediated by synaptic afferents that generate reliable and precise responses in postsynaptic neurons. However, mechanisms that govern plastic changes of cholinergic synaptic strength are poorly understood, even though they are likely critical in shaping the impact of cholinergic inputs on neuronal networks...
July 27, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Alex Crocker-Buque, Stephen P Currie, Liliana L Luz, Seth G Grant, Kevin R Duffy, Peter C Kind, Michael I Daw
Genetic mutations known to cause intellectual disabilities (ID) are concentrated in specific sets of genes including both those encoding synaptic proteins and those expressed during early development. We have characterised the effect of genetic deletion of Dlg3, an ID-related gene encoding the synaptic NMDA-receptor interacting protein SAP102, on development of the mouse somatosensory cortex. SAP102 is the main representative of the PSD-95 family of postsynaptic MAGUK proteins during early development and is proposed to play a role in stabilising receptors at immature synapses...
July 27, 2016: Human Molecular Genetics
Jonathan B Shute, Michael S Okun, Enrico Opri, Rene Molina, P Justin Rossi, Daniel Martinez-Ramirez, Kelly D Foote, Aysegul Gunduz
Tourette syndrome (TS) is a neuropsychiatric disorder characterized by multiple motor and vocal tics. Deep brain stimulation (DBS) is an emerging therapy for severe cases of TS. We studied two patients with TS implanted with bilateral Medtronic Activa PC + S DBS devices, capable of chronic recordings, with depth leads in the thalamic centromedian-parafascicular complex (CM-PF) and subdural strips over the precentral gyrus. Low-frequency (1-10 Hz) CM-PF activity was observed during tics, as well as modulations in beta rhythms over the motor cortex...
2016: NeuroImage: Clinical
Stewart Shipp
Unidirectional connections from the cortex to the matrix of the corpus striatum initiate the cortico-basal ganglia (BG)-thalamocortical loop, thought to be important in momentary action selection and in longer-term fine tuning of behavioural repertoire; a discrete set of striatal compartments, striosomes, has the complementary role of registering or anticipating reward that shapes corticostriatal plasticity. Re-entrant signals traversing the cortico-BG loop impact predominantly frontal cortices, conveyed through topographically ordered output channels; by contrast, striatal input signals originate from a far broader span of cortex, and are far more divergent in their termination...
July 13, 2016: Brain Structure & Function
Nicolás A Morgenstern, Jacques Bourg, Leopoldo Petreanu
Neurons in the thalamorecipient layers of sensory cortices integrate thalamic and recurrent cortical input. Cortical neurons form fine-scale, functionally cotuned networks, but whether interconnected cortical neurons within a column process common thalamocortical inputs is unknown. We tested how local and thalamocortical connectivity relate to each other by analyzing cofluctuations of evoked responses in cortical neurons after photostimulation of thalamocortical axons. We found that connected pairs of pyramidal neurons in layer (L) 4 of mouse visual cortex share more inputs from the dorsal lateral geniculate nucleus than nonconnected pairs...
August 2016: Nature Neuroscience
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"