Read by QxMD icon Read

synapse development

Laiyuan Wang, Zhiyong Wang, Jinyi Lin, Jie Yang, Linghai Xie, Mingdong Yi, Wen Li, Haifeng Ling, Changjin Ou, Wei Huang
Most simulations of neuroplasticity in memristors, which are potentially used to develop artificial synapses, are confined to the basic biological Hebbian rules. However, the simplex rules potentially can induce excessive excitation/inhibition, even collapse of neural activities, because they neglect the properties of long-term homeostasis involved in the frameworks of realistic neural networks. Here, we develop organic CuPc-based memristors of which excitatory and inhibitory conductivities can implement both Hebbian rules and homeostatic plasticity, complementary to Hebbian patterns and conductive to the long-term homeostasis...
October 20, 2016: Scientific Reports
Rodrigo Fabrizzio Inácio, Renata Gacielle Zanon, Mateus Vidigal de Castro, Henrique Marques de Souza, Marcio Chaim Bajgelman, Liana Verinaud, Alexandre Leite Rodrigues de Oliveira
Astrocytes are multifunctional glial cells that actively participate in synaptic plasticity in health and disease. Little is known about molecular interactions between neurons and glial cells that result in synaptic stability or elimination. In this sense, the main histocompatibility complex of class I (MHC I) has been shown to play a role in the synaptic plasticity process during development and after lesion of the CNS. MHC I levels in neurons appear to be influenced by astrocyte secreted molecules, which may generate endoplasmic reticulum stress...
October 14, 2016: Neuroscience Letters
Rosemary J Jackson, Nikita Rudinskiy, Abigail G Herrmann, Shaun Croft, JeeSoo Monica Kim, Veselina Petrova, Juan Jose Ramos-Rodriguez, Rose Pitstick, Susanne Wegmann, Monica Garcia-Alloza, George A Carlson, Bradley T Hyman, Tara L Spires-Jones
Alzheimer's disease is characterized by the presence of aggregates of amyloid beta (Aβ) in senile plaques and tau in neurofibrillary tangles, as well as marked neuron and synapse loss. Of these pathological changes, synapse loss correlates most strongly with cognitive decline. Synapse loss occurs prominently around plaques due to accumulations of oligomeric Aβ. Recent evidence suggests that tau may also play a role in synapse loss but the interactions of Aβ and tau in synapse loss remain to be determined...
October 17, 2016: European Journal of Neuroscience
Miguel A Gonzalez-Lozano, Patricia Klemmer, Titia Gebuis, Chopie Hassan, Pim van Nierop, Ronald E van Kesteren, August B Smit, Ka Wan Li
Development of the brain involves the formation and maturation of numerous synapses. This process requires prominent changes of the synaptic proteome and potentially involves thousands of different proteins at every synapse. To date the proteome analysis of synapse development has been studied sparsely. Here, we analyzed the cortical synaptic membrane proteome of juvenile postnatal days 9 (P9), P15, P21, P27, adolescent (P35) and different adult ages P70, P140 and P280 of C57Bl6/J mice. Using a quantitative proteomics workflow we quantified 1560 proteins of which 696 showed statistically significant differences over time...
October 17, 2016: Scientific Reports
Steven W Barger
Ask any neuroscientist to name the most profound discoveries in the field in the past 60 years, and at or near the top of the list will be a phenomenon or technique related to genes and their expression. Indeed, our understanding of genetics and gene regulation has ushered in whole new systems of knowledge and new empirical approaches, many of which could not have even been imagined prior to the molecular biology boon of recent decades. Neurochemistry, in the classic sense, intersects with these concepts in the manifestation of neuropeptides, obviously dependent upon the central dogma (the established rules by which DNA sequence is eventually converted into protein primary structure) not only for their conformation but also for their levels and locales of expression...
October 17, 2016: Journal of Neurochemistry
H Yamamoto, R Matsumura, H Takaoki, S Katsurabayashi, A Hirano-Iwata, M Niwano
The structure and connectivity of cultured neuronal networks can be controlled by using micropatterned surfaces. Here, we demonstrate that the direction of signal propagation can be precisely controlled at a single-cell resolution by growing primary neurons on micropatterns. To achieve this, we first examined the process by which axons develop and how synapses form in micropatterned primary neurons using immunocytochemistry. By aligning asymmetric micropatterns with a marginal gap, it was possible to pattern primary neurons with a directed polarization axis at the single-cell level...
July 25, 2016: Applied Physics Letters
Irmantas Ratas, Kestutis Pyragas
We analyze the dynamics of a large network of coupled quadratic integrate-and-fire neurons, which represent the canonical model for class I neurons near the spiking threshold. The network is heterogeneous in that it includes both inherently spiking and excitable neurons. The coupling is global via synapses that take into account the finite width of synaptic pulses. Using a recently developed reduction method based on the Lorentzian ansatz, we derive a closed system of equations for the neuron's firing rate and the mean membrane potential, which are exact in the infinite-size limit...
September 2016: Physical Review. E
Lauren P Shapiro, Ryan G Parsons, Anthony J Koleske, Shannon L Gourley
The prevalence of depression, anxiety, schizophrenia, and drug and alcohol use disorders peaks during adolescence. Further, up to 50% of "adult" mental health disorders emerge in adolescence. During adolescence, the prefrontal cortex (PFC) undergoes dramatic structural reorganization, in which dendritic spines and synapses are refined, pruned, and stabilized. Understanding the molecular mechanisms that underlie these processes should help to identify factors that influence the development of psychiatric illness...
October 13, 2016: Journal of Neuroscience Research
Paul Strecker, Susann Ludewig, Marco Rust, Tabea A Mundinger, Andreas Görlich, Elisa G Krächan, Christina Mehrfeld, Joachim Herz, Martin Korte, Suzanne Y Guénette, Stefan Kins
The FE65 adaptor proteins (FE65, FE65L1 and FE65L2) bind proteins that function in diverse cellular pathways and are essential for specific biological processes. Mice lacking both FE65 and FE65L1 exhibit ectopic neuronal positioning in the cortex and muscle weakness. p97FE65-KO mice, expressing a shorter FE65 isoform able to bind amyloid precursor protein family members (APP, APLP1, APLP2), develop defective long-term potentiation (LTP) and aged mice display spatial learning and memory deficits that are absent from young mice...
May 11, 2016: Scientific Reports
Idan Elbaz, David Zada, Adi Tovin, Tslil Braun, Tali Lerer-Goldshtein, Gordon Wang, Philippe Mourrain, Lior Appelbaum
Sleep is tightly regulated by the circadian clock and homeostatic mechanisms. Although the sleep/wake cycle is known to be associated with structural and physiological synaptic changes that benefit the brain, the function of sleep is still debated. The hypothalamic hypocretin/orexin (Hcrt) neurons regulate various functions including feeding, reward, sleep, and wake. Continuous imaging of single neuronal circuits in live animals is vital to understanding the role of sleep in regulating synaptic dynamics, and the transparency of the zebrafish model enables time-lapse imaging of single synapses during both day and night...
October 12, 2016: Molecular Neurobiology
Byunghyuk Kim, Bangxia Suo, Scott W Emmons
We compare whole-animal RNA-seq transcriptomes for C. elegans males and hermaphrodites from the late L3 larval stage to young adulthood. During this interval, male sexual structures develop, including extensive neurogenesis and synaptogenesis that nearly doubles the size of the nervous system. Previous genome-wide expression studies in C. elegans have usually focused on only one sex-the hermaphrodite-and there are a relatively large number of genes that remain without meaningful annotation. In the present study, differential expression analysis of the RNA-seq data revealed 1,751 genes expressed at a higher level in the male...
October 11, 2016: Cell Reports
J Sandström, E Eggermann, I Charvet, A Roux, N Toni, C Greggio, A Broyer, F Monnet-Tschudi, L Stoppini
Alternative models for more rapid compound safety testing are of increasing demand. With emerging techniques using human pluripotent stem cells, the possibility of generating human in vitro models has gained interest, as factors related to species differences could be potentially eliminated. When studying potential neurotoxic effects of a compound it is of crucial importance to have both neurons and glial cells. We have successfully developed a protocol for generating in vitro 3D human neural tissues, using neural progenitor cells derived from human embryonic stem cells...
October 8, 2016: Toxicology in Vitro: An International Journal Published in Association with BIBRA
Chiaki Itami, Fumitaka Kimura
Spike timing-dependent plasticity (STDP) has been demonstrated in a variety of neural circuits. Recent studies reveal that it plays a fundamental role in the formation and remodeling of neuronal circuits. We show here an interaction of two distinct forms of STDP in the mouse barrel cortex causing concurrent, plastic changes, potentially a novel mechanism underlying network remodeling. We previously demonstrated that during the second postnatal week, when layer four (L4) cells are forming synapses onto L2/3 cells, L4-L2/3 synapses exhibit STDP with only long-term potentiation (t-LTP)...
October 11, 2016: European Journal of Neuroscience
Agata Mata, Laura Urrea, Silvia Vilches, Franc Llorens, Katrin Thüne, Juan-Carlos Espinosa, Olivier Andréoletti, Alejandro M Sevillano, Juan María Torres, Jesús Rodríguez Requena, Inga Zerr, Isidro Ferrer, Rosalina Gavín, José Antonio Del Río
Reelin is an extracellular glycoprotein involved in key cellular processes in developing and adult nervous system, including regulation of neuronal migration, synapse formation, and plasticity. Most of these roles are mediated by the intracellular phosphorylation of disabled-1 (Dab1), an intracellular adaptor molecule, in turn mediated by binding Reelin to its receptors. Altered expression and glycosylation patterns of Reelin in cerebrospinal and cortical extracts have been reported in Alzheimer's disease...
October 10, 2016: Molecular Neurobiology
B Zhang, E Seigneur, P Wei, O Gokce, J Morgan, T C Südhof
Neuroligins are postsynaptic cell-adhesion molecules that bind to presynaptic neurexins. Mutations in neuroligin-3 predispose to autism, but how such mutations affect synaptic function remains incompletely understood. Here we systematically examined the effect of three autism-associated mutations, the neuroligin-3 knockout, the R451C knockin, and the R704C knockin, on synaptic transmission in the calyx of Held, a central synapse ideally suited for high-resolution analyses of synaptic transmission. Surprisingly, germline knockout of neuroligin-3 did not alter synaptic transmission, whereas the neuroligin-3 R451C and R704C knockins decreased and increased, respectively, synaptic transmission...
October 11, 2016: Molecular Psychiatry
Marco Sassoè-Pognetto, Annarita Patrizi
Since the groundbreaking work of Ramon y Cajal, the cerebellar Purkinje cell has always represented an ideal model for studying the organization, development and function of synaptic circuits. Purkinje cells receive distinct types of glutamatergic and GABAergic synapses, each characterized by exquisite sub-cellular and molecular specificity. The formation and refinement of these connections results from a temporally-regulated sequence of events that involves molecular interactions between distinct sets of secreted and surface proteins, as well as activity-dependent competition between converging inputs...
October 6, 2016: Brain Research Bulletin
Yelin Chen, Yang Geng
Brain modulation is a powerful approach to study brain function in vivo. Tremendous progress had been made by controlling brain activity with different brain modulation tools. Synapse is the more fundamental functional unit of brain. In theory, synapse engineering could modulate brain function more precisely. However this had not been possible until recently. Our review provides a brief introduction of various brain modulation methods, and elaborates on a recently developed synapse-engineering tool. This technique allows modulation of specific synapses in vivo for the first time and has been used to clarify the causal role of synaptic plasticity in learning and memory...
October 6, 2016: Brain Research Bulletin
Vivian Y Poon, Minxia Gu, Fang Ji, Antonius M VanDongen, Marc Fivaz
BACKGROUND: MicroRNAs (miRNAs) are short non-coding RNAs that are emerging as important post-transcriptional regulators of neuronal and synaptic development. The precise impact of miRNAs on presynaptic function and neurotransmission remains, however, poorly understood. RESULTS: Here, we identify miR-27b-an abundant neuronal miRNA implicated in neurological disorders-as a global regulator of the presynaptic transcriptome. miR-27b influences the expression of three quarters of genes associated with presynaptic function in cortical neurons...
October 4, 2016: BMC Genomics
Jaime Eugenín-von Bernhardi, Leda Dimou
NG2-glia are a mysterious and ubiquitous glial population with a highly branched morphology. Initial studies suggested that their unique function is the generation and maintenance of oligodendrocytes in the central nervous system (CNS), important for proper myelination and therefore for axonal support and fast conduction velocity. Over the last years this simplistic notion has been dramatically changed: the wide and homogeneous distribution of NG2-glia within all areas of the developing CNS that is maintained during the whole lifespan, their potential to also differentiate into other cell types in a spatiotemporal manner, their active capability of maintaining their population and their dynamic behavior in altered conditions have raised the question: are NG2-glia simple progenitor cells or do they play further major roles in the normal function of the CNS? In this chapter, we will discuss some important features of NG2-glia like their homeostatic distribution in the CNS and their potential to differentiate into diverse cell types...
2016: Advances in Experimental Medicine and Biology
Valentina Zamboni, Maria Armentano, Gabriella Sarò, Elisa Ciraolo, Alessandra Ghigo, Giulia Germena, Alessandro Umbach, Pamela Valnegri, Maria Passafaro, Valentina Carabelli, Daniela Gavello, Veronica Bianchi, Patrizia D'Adamo, Ivan de Curtis, Nadia El-Assawi, Alessandro Mauro, Lorenzo Priano, Nicola Ferri, Emilio Hirsch, Giorgio R Merlo
During brain development, the small GTPases Rac1/Rac3 play key roles in neuronal migration, neuritogenesis, synaptic formation and plasticity, via control of actin cytoskeleton dynamic. Their activity is positively and negatively regulated by GEFs and GAPs molecules, respectively. However their in vivo roles are poorly known. The ArhGAP15 gene, coding for a Rac-specific GAP protein, is expressed in both excitatory and inhibitory neurons of the adult hippocampus, and its loss results in the hyperactivation of Rac1/Rac3...
October 7, 2016: Scientific Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"