Read by QxMD icon Read

Neural stem cells

Dasa Cizkova, Veronika Cubinkova, Tomas Smolek, Adriana-Natalia Murgoci, Jan Danko, Katarina Vdoviakova, Filip Humenik, Milan Cizek, Jusal Quanico, Isabelle Fournier, Michel Salzet
It was recently shown that the conditioned medium (CM) of mesenchymal stem cells can enhance viability of neural and glial cell populations. In the present study, we have investigated a cell-free approach via CM from rat bone marrow stromal cells (MScCM) applied intrathecally (IT) for spinal cord injury (SCI) recovery in adult rats. Functional in vitro test on dorsal root ganglion (DRG) primary cultures confirmed biological properties of collected MScCM for production of neurosphere-like structures and axon outgrowth...
March 15, 2018: International Journal of Molecular Sciences
Bárbara da Silva, Ryan K Mathew, Euan S Polson, Jennifer Williams, Heiko Wurdak
Organoid methodology provides a platform for the ex vivo investigation of the cellular and molecular mechanisms underlying brain development and disease. The high-grade brain tumor glioblastoma multiforme (GBM) is considered a cancer of unmet clinical need, in part due to GBM cell infiltration into healthy brain parenchyma, making complete surgical resection improbable. Modeling the process of GBM invasion in real time is challenging as it requires both tumor and neural tissue compartments. Here, we demonstrate that human GBM spheroids possess the ability to spontaneously infiltrate early-stage cerebral organoids (eCOs)...
March 1, 2018: SLAS Discovery
Bingbo Zhang, Wei Yan, Yanjing Zhu, Weitao Yang, Wenjun Le, Bingdi Chen, Rongrong Zhu, Liming Cheng
Patients are increasingly being diagnosed with neuropathic diseases, but are rarely cured because of the loss of neurons in damaged tissues. This situation creates an urgent clinical need to develop alternative treatment strategies for effective repair and regeneration of injured or diseased tissues. Neural stem cells (NSCs), highly pluripotent cells with the ability of self-renewal and potential for multidirectional differentiation, provide a promising solution to meet this demand. However, some serious challenges remaining to be addressed are the regulation of implanted NSCs, tracking their fate, monitoring their interaction with and responsiveness to the tissue environment, and evaluating their treatment efficacy...
March 15, 2018: Advanced Materials
Aurora Bernal, Lorena Arranz
The neuroepithelial stem cell protein, or Nestin, is a cytoskeletal intermediate filament initially characterized in neural stem cells. However, current extensive evidence obtained in in vivo models and humans shows presence of Nestin+ cells with progenitor and/or regulatory functions in a number of additional tissues, remarkably bone marrow. This review presents the current knowledge on the role of Nestin in essential stem cell functions, including self-renewal/proliferation, differentiation and migration, in the context of the cytoskeleton...
March 14, 2018: Cellular and Molecular Life Sciences: CMLS
Xin Xue, Xingxing Chen, Weili Fan, Guan Wang, Liang Zhang, Zongfeng Chen, Peng Liu, Mingyong Liu, Jianhua Zhao
High-mobility group box 1 (HMGB1) facilitates neural stem cells (NSCs) proliferation and differentiation into neuronal linage. However, the effect of HMGB1 on NSCs migration is still elusive. The present study is to investigate the corelation between HMGB1 and NSCs migration and the potential mechanism. The results indicated that 1 ng/ml HMGB1 promoted NSCs proliferation using CCK8 assays. Moreover, data showed that 1 ng/ml HMGB1 facilitated NSCs migration via filopodia formation using phase-contrast and transwell assays...
March 14, 2018: Scientific Reports
Nathália Kersting, Bárbara Kunzler Souza, Igor Araujo Vieira, Rafael Pereira Dos Santos, Danielly Brufatto Olguins, Lauro José Gregianin, André Tesainer Brunetto, Algemir Lunardi Brunetto, Rafael Roesler, Caroline Brunetto de Farias, Gilberto Schwartsmann
OBJECTIVE: Ewing sarcoma (ES) is a type of childhood cancer probably arising from stem mesenchymal or neural crest cells. The epidermal growth factor receptor (EGFR) acts as a driver oncogene in many types of solid tumors. However, its involvement in ES remains poorly understood. METHODS: Human SK-ES-1 and RD-ES ES cells were treated with EGF, the EGFR inhibitor tyrphostin (AG1478), or phosphoinositide 3-kinase (PI3K) or extracellular-regulated kinase (ERK)/mitogen-activated kinase (MAPK) inhibitors...
March 14, 2018: Oncology
Genia Dubrovsky, James C Y Dunn
PURPOSE OF REVIEW: The purpose of this review is to briefly summarize the notable structures and pathways in intestinal epithelial growth before presenting the current main areas of active research in intestinal regeneration. As a rapidly advancing field, a number of breakthroughs have recently been made related to the culture of intestinal stem cells (ISCs) and to the engineering of intestinal tissue. RECENT FINDINGS: ISCs can be derived from fibroblasts and can be cultured in hydrogels under xenogeneic-free conditions...
March 13, 2018: Current Opinion in Pediatrics
S Kabatas, C S Demir, E Civelek, I Yilmaz, A Kircelli, C Yilmaz, Y Akyuva, E Karaoz
OBJECTIVE: This study aimed to analyze the effect of human Dental Pulp-Neural Crest Stem Cells (hDP-NCSCs) delivery on lesion site after spinal cord injury (SCI), and to observe the functional recovery after transplantation. METHODS: Neural Crest Stem Cells (NCSCs) were isolated from human Dental Pulp (hDP). The experimental rat population was divided into four groups (n = 6/24). Their behavioral motility was scored regularly. After 4-weeks, rats were sacrificed, and their spinal cords were examined for Green Fluorescent Protein (GFP) labeled hDP-NCSCs by immunofluorescence (IF) staining...
2018: Bratislavské Lekárske Listy
Gary Hin-Fai Yam, Ericia Pei-Wen Teo, Melina Setiawan, Matthew J Lovatt, Nur Zahirah Binte M Yusoff, Matthias Fuest, Bee-Tin Goh, Jodhbir S Mehta
Corneal opacities are a leading cause of global blindness. They are conventionally treated by the transplantation of donor corneal tissue, which is, restricted by a worldwide donor material shortage and allograft rejection. Autologous adult stem cells with a potential to differentiate into corneal stromal keratocytes (CSKs) could offer a suitable choice of cells for regenerative cell therapy. Postnatal periodontal ligament (PDL) contains a population of adult stem cells, which has a similar embryological origin as CSK, that is cranial neural crest...
March 13, 2018: Journal of Cellular and Molecular Medicine
Hitomi Aoki
Rest is a regulator of neuronal development and has been suggested to function in maintaining the pluripotent state of embryonic stem cells (ESCs); however, this remains controversial. Since Rest null mice show embryonic lethality, we herein generated conditional Rest knockout (CKO) models to investigate Rest functions in more detail. Our results revealed that Rest was not necessary for maintaining the pluripotency of ESCs and instead promoted primitive endoderm differentiation. In contrast to the repressive role of Rest in vitro, including ESCs, neural stem cells, and fibroblasts, on the expression of target neural genes, Rest CKO did not affect the in vivo development of brain tissue...
March 13, 2018: Medical Molecular Morphology
Junhao Deng, Yiling Zhang, Yong Xie, Licheng Zhang, Peifu Tang
Spinal cord injury (SCI) is an intractable and worldwide difficult medical challenge with limited treatments. Neural stem/progenitor cell (NS/PC) transplantation derived from fetal tissues or embryonic stem cells (ESCs) has demonstrated therapeutic effects via replacement of lost neurons and severed axons and creation of permissive microenvironment to promote repair of spinal cord and axon regeneration but causes ethnical concerns and immunological rejections as well. Thus, the implementation of induced pluripotent stem cells (iPSCs), which can be generated from adult somatic cells and differentiated into NS/PCs, provides an effective alternation in the treatment of SCI...
2018: Stem Cells International
Kevin C Kemp, Kelly Hares, Juliana Redondo, Amelia J Cook, Harry R Haynes, Bronwen R Burton, Mark A Pook, Claire M Rice, Neil J Scolding, Alastair Wilkins
OBJECTIVES: Friedreich's ataxia is an incurable inherited neurological disease caused by frataxin deficiency. Here we report the neuro-reparative effects of myeloablative allogeneic bone marrow transplantation in a humanised murine model of the disease. METHODS: Mice received a transplant of fluorescently-tagged sex mis-matched bone marrow cells expressing wild-type frataxin and were assessed at monthly intervals using a range of behavioural motor performance tests...
March 13, 2018: Annals of Neurology
Chandrakanth Reddy Edamakanti, Jeehaeh Do, Alessandro Didonna, Marco Martina, Puneet Opal
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the protein ATXN1, which is involved in transcriptional regulation. Although symptoms appear relatively late in life, primarily from cerebellar dysfunction, pathogenesis begins early, with brain-wide transcriptional changes detectable as early as a week after birth in SCA1 knock-in mice. Given the importance of this postnatal period for cerebellar development, we asked whether this region might be developmentally altered by mutant ATXN1...
March 13, 2018: Journal of Clinical Investigation
Liu-Lin Xiong, Yu Zou, Yu Shi, Piao Zhang, Rong-Ping Zhang, Xie-Jie Dai, Bin Liu, Ting-Hua Wang
The aim of the present study was to determine the effect of implanted neural stem cells (NSCs) on the functional recovery of tree shrews (TSs) subjected to hemi‑sectioned spinal cord injury (hSCI), and to investigate the possible mechanism involved. NSCs (passage 2), derived from the hippocampus of TSs (embryonic day 20), were labeled with Hoechst 33342 and transplanted intraspinally into the hSC of TSs at thoracic level 10 in the acute (immediately after injury) and chronic (day 9 post‑injury) stages...
March 9, 2018: International Journal of Molecular Medicine
Godwin Sokpor, Eman Abbas, Joachim Rosenbusch, Jochen F Staiger, Tran Tuoc
The postnatal mammalian olfactory epithelium (OE) represents a major aspect of the peripheral olfactory system. It is a pseudostratified tissue that originates from the olfactory placode and is composed of diverse cells, some of which are specialized receptor neurons capable of transducing odorant stimuli to afford the perception of smell (olfaction). The OE is known to offer a tractable miniature model for studying the systematic generation of neurons and glia that typify neural tissue development. During OE development, stem/progenitor cells that will become olfactory sensory neurons and/or non-neuronal cell types display fine spatiotemporal expression of neuronal and non-neuronal genes that ensures their proper proliferation, differentiation, survival, and regeneration...
March 12, 2018: Molecular Neurobiology
Laura B Ngwenya, Sarmistha Mazumder, Zachary R Porter, Amy Minnema, Duane J Oswald, H Francis Farhadi
Cognitive deficits after traumatic brain injury (TBI) are debilitating and contribute to the morbidity and loss of productivity of over 10 million people worldwide. Cell transplantation has been linked to enhanced cognitive function after experimental traumatic brain injury, yet the mechanism of recovery is poorly understood. Since the hippocampus is a critical structure for learning and memory, supports adult neurogenesis, and is particularly vulnerable after TBI, we hypothesized that stem cell transplantation after TBI enhances cognitive recovery by modulation of endogenous hippocampal neurogenesis...
2018: Stem Cells International
Sveva Grande, Alessandra Palma, Lucia Ricci-Vitiani, Anna Maria Luciani, Mariachiara Buccarelli, Mauro Biffoni, Agnese Molinari, Annarica Calcabrini, Emanuela D'Amore, Laura Guidoni, Roberto Pallini, Vincenza Viti, Antonella Rosi
Clustering of patient-derived glioma stem-like cells (GSCs) through unsupervised analysis of metabolites detected by magnetic resonance spectroscopy (MRS) evidenced three subgroups, namely clusters 1a and 1b, with high intergroup similarity and neural fingerprints, and cluster 2, with a metabolism typical of commercial tumor lines. In addition, subclones generated by the same GSC line showed different metabolic phenotypes. Aerobic glycolysis prevailed in cluster 2 cells as demonstrated by higher lactate production compared to cluster 1 cells...
2018: Stem Cells International
Marcos Assis Nascimento, Lydia Sorokin, Tatiana Coelho-Sampaio
Fractones are extracellular matrix structures in the neural stem cell niche of the subventricular zone (SVZ), where they appear as round deposits named bulbs or thin branching lines called stems. Their cellular origin and what determines their localization at this site is poorly studied and it remains unclear whether they influence neural stem and progenitor cells formation, proliferation and/or maintenance. To address these questions, we analyzed whole mount preparations of the lateral ventricle of male and female mice by confocal microscopy using different extracellular matrix and cell markers...
March 12, 2018: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Xiao-Xiao Ma, Jin Liu, Chun-Man Wang, Jiang-Ping Zhou, Zhen-Zhou He, Han Lin
AIMS: This study was to determine whether curcumin had any effect on the proliferation of neural stem cell (NSC), analyze the expression of glucocorticoid receptor (GR), signal transducer and activator of transcription 3 (STAT3), and Notch1 at transcription and protein level, and discuss the related mechanisms. METHODS AND RESULTS: NSCs were harvested from E15 SD rat brain and cultured. All experiments were performed at the second passage. Cell cytotoxicity, cell viability, and proliferation assays were used to figure out the optimal concentration of curcumin, which can be used for the protein and mRNA studies...
March 12, 2018: CNS Neuroscience & Therapeutics
Chengjian Zhao, Gustavo A Gomez, Yuwei Zhao, Yu Yang, Dan Cao, Jing Lu, Hanshuo Yang, Shuo Lin
Glioblastoma multiforme (GBM) is characterized by extensive endothelial hyperplasia. Recent studies suggest that a subpopulation of endothelial cells originates via vasculogenesis by the transdifferentiation of GBM tumor cells into endothelial cells (endo-transdifferentiation). The molecular mechanism underlying this process remains poorly defined. Here, we show that the expression of ETS variant 2 (ETV2), a master regulator of endothelial cell development, is highly correlated with malignancy. Functional studies demonstrate that ETV2 is sufficient and necessary for the transdifferentiation of a subpopulation of CD133+/Nestin+ GBM/neural stem cells to an endothelial lineage...
2018: Signal Transduction and Targeted Therapy
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"