Read by QxMD icon Read


Kazuhiro Shima, Wataru Nemoto, Masahiro Tsuchiya, Koichi Tan-No, Teruko Takano-Yamamoto, Shunji Sugawara, Yasuo Endo
Bisphosphonates (BPs) are typical anti-bone-resorptive drugs, with nitrogen-containing BPs (N-BPs) being stronger than non-nitrogen-containing BPs (non-N-BPs). However, N-BPs have inflammatory/necrotic effects, while the non-N-BPs clodronate and etidronate lack such side effects. Pharmacological studies have suggested that clodronate and etidronate can (i) prevent the side effects of N-BPs in mice via inhibition of the phosphate transporter families SLC20 and/or SLC34, through which N-BPs enter soft-tissue cells, and (ii) also inhibit the phosphate transporter family SLC17...
2016: Biological & Pharmaceutical Bulletin
Masatoshi Inden, Masaki Iriyama, Miho Zennami, Shin-Ichiro Sekine, Akira Hara, Mitsunori Yamada, Isao Hozumi
PiT-1/SLC20A1 and PiT-2/SLC20A2 are members of the mammalian type-III inorganic phosphate (Pi) transporters encoded by the SLC20 genes. The broad distribution of SLC20A1 and SLC20A2 mRNAs in mammalian tissues is compatible with housekeeping maintenance of intracellular Pi homeostasis by transporting Pi from intrastitial fluid for normal cellular functions. Recently, mutations of SLC20A2 have been found in patients with idiopathic basal ganglia calcification (IBGC), also known as Fahr's disease. However, the localization of PiT-1 and PiT-2 in the normal brain has not been clarified yet...
April 15, 2016: Brain Research
Natsuko Togawa, Narinobu Juge, Takaaki Miyaji, Miki Hiasa, Hiroshi Omote, Yoshinori Moriyama
Membrane potential (Δψ)-driven and Cl(-)-dependent organic anion transport is a primary function of the solute carrier family 17 (SLC17) transporter family. Although the transport substrates and physiological relevance of the major members are well understood, SLC17A2 protein known to be Na(+)-phosphate cotransporter 3 (NPT3) is far less well characterized. In the present study, we investigated the transport properties and expression patterns of mouse SLC17A2 protein (mNPT3). Proteoliposomes containing the purified mNPT3 protein took up radiolabeled p-aminohippuric acid (PAH) in a Δψ- and Cl(-)-dependent manner...
July 15, 2015: American Journal of Physiology. Cell Physiology
Eduardo Candeal, Yupanqui A Caldas, Natalia Guillén, Moshe Levi, Víctor Sorribas
Pi transport in epithelia has both Na(+)-dependent and Na(+)-independent components, but so far only Na(+)-dependent transporters have been characterized in detail and molecularly identified. Consequently, in the present study, we initiated the characterization and analysis of intestinal Na(+)-independent Pi transport using an in vitro model, Caco2BBE cells. Only Na(+)-independent Pi uptake was observed in these cells, and Pi uptake was dramatically increased when cells were incubated in high-Pi DMEM (4 mM) from 1 day to several days...
December 15, 2014: American Journal of Physiology. Cell Physiology
Christine Anne, Bruno Gasnier
Secondary transporters driven by a V-type H⁺-ATPase accumulate nonpeptide neurotransmitters into synaptic vesicles. Distinct transporter families are involved depending on the neurotransmitter. Monoamines and acetylcholine on the one hand, and glutamate and ATP on the other hand, are accumulated by SLC18 and SLC17 transporters, respectively, which belong to the major facilitator superfamily (MFS). GABA and glycine accumulate through a common SLC32 transporter from the amino acid/polyamine/organocation (APC) superfamily...
2014: Current Topics in Membranes
Monica Jenstad, Farrukh Abbas Chaudhry
Intercellular communication is pivotal in optimizing and synchronizing cellular responses to keep homeostasis and to respond adequately to external stimuli. In the central nervous system (CNS), glutamatergic and GABAergic signals are postulated to be dependent on the glutamate/GABA-glutamine cycle for vesicular loading of neurotransmitters, for inactivating the signal and for the replenishment of the neurotransmitters. Islets of Langerhans release the hormones insulin and glucagon, but share similarities with CNS cells in for example transcriptional control of development and differentiation, and chromatin methylation...
2013: Frontiers in Endocrinology
Takaaki Miyaji, Tatsuya Kawasaki, Natsuko Togawa, Hiroshi Omote, Yoshinori Moriyama
SLC17A1 protein (NPT1) was the first identified member of the SLC17 phosphate transporter family, and is known to mediate Na(+)/inorganic phosphate (Pi) co-transport when expressed in Xenopus oocytes. Although this protein was suggested to be a renal polyspecific anion exporter, its transport properties were not well characterized. The clean biochemical approach revealed that proteoliposomes comprising purified NPT1 as the only protein source transport various organic anions such as urate, p-aminohippuric acid (PAH), and acetylsalicylic acid (aspirin) in a membrane potential (Δψ)-driven and Cl(-) -dependent manner...
July 2013: Current Molecular Pharmacology
Zhiyong Shao, Shigeki Watanabe, Ryan Christensen, Erik M Jorgensen, Daniel A Colón-Ramos
Synaptic contacts are largely established during embryogenesis and are then maintained during growth. To identify molecules involved in this process, we conducted a forward genetic screen in C. elegans and identified cima-1. In cima-1 mutants, synaptic contacts are correctly established during embryogenesis, but ectopic synapses emerge during postdevelopmental growth. cima-1 encodes a solute carrier in the SLC17 family of transporters that includes sialin, a protein that when mutated in humans results in neurological disorders...
July 18, 2013: Cell
Hiroyuki Sakurai
PURPOSE OF REVIEW: Recent advances in genome technology have provided us with a list of molecules affecting urate handling in humans, many of which are unlikely to be identified through traditional physiological approach alone. Although this article is focused on urate, this can be viewed as a successful model of genomics-physiology collaboration. RECENT FINDINGS: URATv1/GLUT9 (SLC2A9) is shown to play a critical role in urate reabsorption at the proximal tubule, probably more prominent than its partner URAT1 (SLC22A12)...
September 2013: Current Opinion in Nephrology and Hypertension
Richard J Reimer
Molecular studies have determined that the SLC17 transporters, a family of nine proteins initially implicated in phosphate transport, mediate the transport of organic anions. While their role in phosphate transport remains uncertain, it is now clear that the transport of organic anions facilitated by this family of proteins is involved in diverse processes ranging from the vesicular storage of the neurotransmitters, to urate metabolism, to the degradation and metabolism of glycoproteins.
April 2013: Molecular Aspects of Medicine
Natsuko Togawa, Takaaki Miyaji, Sho Izawa, Hiroshi Omote, Yoshinori Moriyama
The SLC17 anion transporter family comprises nine members that transport various organic anions in membrane potential (Δψ)- and Cl(-)-dependent manners. Although the transport substrates and physiological relevance of the majority of the members have already been determined, little is known about SLC17A4 proteins known to be Na(+)-phosphate cotransporter homologue (NPT homologue). In the present study, we investigated the expression and transport properties of human SLC17A4 protein. Using specific antibodies, we found that a human NPT homologue is specifically expressed and present in the intestinal brush border membrane...
June 1, 2012: American Journal of Physiology. Cell Physiology
Nicolas Pietrancosta, Christine Anne, Horst Prescher, Raquel Ruivo, Corinne Sagné, Cécile Debacker, Hugues-Olivier Bertrand, Reinhard Brossmer, Francine Acher, Bruno Gasnier
Secondary active transporters from the SLC17 protein family are required for excitatory and purinergic synaptic transmission, sialic acid metabolism, and renal function, and several members are associated with inherited neurological or metabolic diseases. However, molecular tools to investigate their function or correct their genetic defects are limited or absent. Using structure-activity, homology modeling, molecular docking, and mutagenesis studies, we have located the substrate-binding site of sialin (SLC17A5), a lysosomal sialic acid exporter also recently implicated in exocytotic release of aspartate...
March 30, 2012: Journal of Biological Chemistry
Takaaki Miyaji, Keisuke Sawada, Hiroshi Omote, Yoshinori Moriyama
The vesicular nucleotide transporter (VNUT) is a secretory vesicle protein that is responsible for the vesicular storage and subsequent exocytosis of ATP (Sawada, K., Echigo, N., Juge, N., Miyaji, T., Otsuka, M., Omote, H., and Moriyama, Y. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 5683-5686). Because VNUT actively transports ATP in a membrane potential (Δψ)-dependent manner irrespective of divalent cations such as Mg(2+) and Ca(2+), VNUT recognizes free ATP as a transport substrate. However, whether or not VNUT transports chelating complexes with divalent cations remains unknown...
December 16, 2011: Journal of Biological Chemistry
Masafumi Iharada, Takaaki Miyaji, Takahiro Fujimoto, Miki Hiasa, Naohiko Anzai, Hiroshi Omote, Yoshinori Moriyama
SLC17A1 protein (NPT1) is the first identified member of the SLC17 phosphate transporter family and mediates the transmembrane cotransport of Na(+)/P(i) in oocytes. Although this protein is believed to be a renal polyspecific anion exporter, its transport properties are not well characterized. Here, we show that proteoliposomes containing purified SLC17A1 transport various organic anions such as p-aminohippuric acid and acetylsalicylic acid (aspirin) in an inside positive membrane potential (Deltapsi)-dependent manner...
August 20, 2010: Journal of Biological Chemistry
Lorena Ruiz-Pavón, Patrik M Karlsson, Jonas Carlsson, Dieter Samyn, Bengt Persson, Bengt L Persson, Cornelia Spetea
The anion transporter 1 (ANTR1) from Arabidopsis thaliana, homologous to the mammalian members of the solute carrier 17 (SLC17) family, is located in the chloroplast thylakoid membrane. When expressed heterologously in Escherichia coli, ANTR1 mediates a Na(+)-dependent active transport of inorganic phosphate (P(i)). The aim of this study was to identify amino acid residues involved in P(i) binding and translocation by ANTR1 and in the Na(+) dependence of its activity. A three-dimensional structural model of ANTR1 was constructed using the crystal structure of glycerol 3-phosphate/phosphate antiporter from E...
August 3, 2010: Biochemistry
Pascal Courville, Matthias Quick, Richard J Reimer
Salla disease and infantile sialic acid storage disorder are human diseases caused by loss of function of sialin, a lysosomal transporter that mediates H(+)-coupled symport of acidic sugars N-acetylneuraminic acid and glucuronic acid out of lysosomes. Along with the closely related vesicular glutamate transporters, sialin belongs to the SLC17 transporter family. Despite their critical role in health and disease, these proteins remain poorly understood both structurally and mechanistically. Here, we use substituted cysteine accessibility screening and radiotracer flux assays to evaluate experimentally a computationally generated three-dimensional structure model of sialin...
June 18, 2010: Journal of Biological Chemistry
Smitha Sreedharan, Jafar H A Shaik, Pawel K Olszewski, Allen S Levine, Helgi B Schiöth, Robert Fredriksson
BACKGROUND: The SLC17 family of transporters transports the amino acids: glutamate and aspartate, and, as shown recently, also nucleotides. Vesicular glutamate transporters are found in distinct species, such as C. elegans, but the evolutionary origin of most of the genes in this family has been obscure. RESULTS: Our phylogenetic analysis shows that the SLC17 family consists of four main phylogenetic clades which were all present before the divergence of the insect lineage...
2010: BMC Genomics
Josefin A Jacobsson, Olga Stephansson, Robert Fredriksson
About one third of all known human proteins are membrane proteins, which constitute several large families. The solute carriers with over 300 known members are probably the second largest family with additional members frequently being identified. We recently found a new putative solute carrier, C6ORF192, belonging to the major facilitator superfamily type of proteins. The gene is evolutionary highly conserved with a single copy present in each of the genomes from mouse, rat, chicken, zebrafish, tetraodon, Caenorhabditis elegans, and Drosophila melanogaster...
June 2010: Journal of Molecular Neuroscience: MN
B Guo, Y Jin, C Wussler, E B Blancaflor, C M Motes, W K Versaw
The transport of phosphate (Pi) between subcellular compartments is central to metabolic regulation. Although some of the transporters involved in controlling the intracellular distribution of Pi have been identified in plants, others are predicted from genetic, biochemical and bioinformatics studies. Heterologous expression in yeast, and gene expression and localization in plants were used to characterize all six members of an Arabidopsis thaliana membrane transporter family designated here as PHT4. PHT4 proteins share similarity with SLC17/type I Pi transporters, a diverse group of animal proteins involved in the transport of Pi, organic anions and chloride...
2008: New Phytologist
Ilaria Badagnani, Marco Sorani, Robert H Edwards, Chaline Brown, Richard A Castro, Conrad C Huang, Doug Stryke, Michiko Kawamoto, Susan J Johns, Elaine J Carlson, Travis Taylor, Wendy Chan, Melanie De La Cruz, Thomas E Ferrin, Esteban G Burchard, Ira Herskowitz, Deanna L Kroetz, Kathleen M Giacomini
No abstract text is available yet for this article.
March 2006: Pharmacological Reviews
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"