Read by QxMD icon Read


Han Liu, Chunhai Chen, Zexia Gao, Jiumeng Min, Yongming Gu, Jianbo Jian, Xiewu Jiang, Huimin Cai, Ingo Ebersberger, Meng Xu, Xinhui Zhang, Jianwei Chen, Wei Luo, Boxiang Chen, Junhui Chen, Hong Liu, Jiang Li, Ruifang Lai, Mingzhou Bai, Jin Wei, Shaokui Yi, Huanling Wang, Xiaojuan Cao, Xiaoyun Zhou, Yuhua Zhao, Kaijian Wei, Ruibin Yang, Bingnan Liu, Shancen Zhao, Xiaodong Fang, Manfred Schartl, Xueqiao Qian, Weimin Wang
Background: The blunt snout bream, Megalobrama amblycephala , is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. Results: As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draft genome of M. amblycephala , with 779.54 Mb anchored on 24 linkage groups...
May 23, 2017: GigaScience
Nipawan Nuemket, Norihisa Yasui, Yuko Kusakabe, Yukiyo Nomura, Nanako Atsumi, Shuji Akiyama, Eriko Nango, Yukinari Kato, Mika K Kaneko, Junichi Takagi, Maiko Hosotani, Atsuko Yamashita
The taste receptor type 1 (T1r) family perceives 'palatable' tastes. These receptors function as T1r2-T1r3 and T1r1-T1r3 heterodimers to recognize a wide array of sweet and umami (savory) tastes in sugars and amino acids. Nonetheless, it is unclear how diverse tastes are recognized by so few receptors. Here we present crystal structures of the extracellular ligand-binding domains (LBDs), the taste recognition regions of the fish T1r2-T1r3 heterodimer, bound to different amino acids. The ligand-binding pocket in T1r2LBD is rich in aromatic residues, spacious and accommodates hydrated percepts...
May 23, 2017: Nature Communications
Junqiang Liu, Yanhong Wang, Dewei Li, Yanhuan Wang, Menglu Li, Caifa Chen, Xingtang Fang, Hong Chen, Chunlei Zhang
SCOPE: Understanding the regulatory mechanism of milk protein synthesis is important to develop strategies to improve milk protein and enhance lactation performance. mTOR pathway is a crucial modulator of protein synthesis. In this study, we want to investigate if T1R1/T1R3 can regulate milk protein synthesis and mediate the mTOR pathway in the mice mammary gland in vivo. METHODS AND RESULTS: T1R1 knockout mice, WT mice, and mammary explants were used. The weigh-suckle-weigh method was used to quantify the milk yield...
May 12, 2017: Molecular Nutrition & Food Research
Jinxing Shi, Siyuan Wang, Qingfeng Ke, Jianhua Lin, Yuhui Zheng, Shiqiang Wu, Zida Huang, Wenping Lin
As an active and predominant blood leukocyte population, granulocytes infiltrate into injured spinal cord and produce pro-inflammatory mediators to aggravate neuroinflammation. In the current study, we identify the role of the T1R1/T1R3 receptor in granulocyte-mediated neuroinflammation in a rat spinal cord injury (SCI) model. We found that T1R1 and T1R3 were substantially expressed in both circulating and infiltrating granulocytes. In vitro stimulation of T1R1/T1R3 receptor with L-serine notably reduced production of reactive oxygen species (ROS) and several pro-inflammatory cytokines...
August 1, 2017: Journal of Neurotrauma
Michael G Tordoff
Rodents consume solutions of phosphates and pyrophosphates in preference to water. Recently, we found that the preference for trisodium pyrophosphate (Na3HP2O7) was greater in T1R3 knockout (KO) mice than wild-type (WT) controls, suggesting that T1R3 is a pyrophosphate detector. We now show that this heightened Na3HP2O7 preference of T1R3 KO mice extends to disodium phosphate (Na2HPO4), disodium and tetrasodium pyrophosphate (Na2H2PO4 and Na4H2PO4), a tripolyphosphate (Na5P3O10), a non-sodium phosphate [(NH4)2HPO4], and a non-sodium pyrophosphate (K4P2O7) but not to non-P salts with large anions (sodium gluconate, acetate, or propionate)...
June 1, 2017: Chemical Senses
Ginger D Blonde, Alan C Spector
The heterodimeric T1R1 + T1R3 receptor is considered critical for normal signaling of L-glutamate and 5'-ribonucleotides in the oral cavity. However, some taste-guided responsiveness remains in mice lacking one subunit of the receptor, suggesting that other receptors are sufficient to support some behaviors. Here, mice lacking both receptor subunits (KO) and wild-type (WT, both n = 13) mice were tested in a battery of behavioral tests. Mice were trained and tested in gustometers with a concentration series of Maltrin-580, a maltodextrin, in a brief-access test (10-s trials) as a positive control...
June 1, 2017: Chemical Senses
Matthew Kochem, Paul A S Breslin
In humans, umami taste can increase the palatability of foods rich in the amino acids glutamate and aspartate and the 5'-ribonucleotides IMP and GMP. Umami taste is transduced, in part, by T1R1-T1R3, a heteromeric G-protein coupled receptor. Umami perception is inhibited by sodium lactisole, which binds to the T1R3 subunit in vitro. Lactisole is structurally similar to the fibrate drugs. Clofibric acid, a lipid lowering drug, also binds the T1R3 subunit in vitro. The purpose of this study was to determine whether clofibric acid inhibits the umami taste of glutamate in human subjects...
2017: PloS One
Xiaqin Yu, Lujia Zhang, Xiaodan Miao, Yanyu Li, Yuan Liu
Umami is thought to be initiated by binding tastants to G-protein-coupled receptors in taste cells, while the structure and mechanism of the receptors are not clear. In this study, we summarized umami peptides and classified them roughly into two groups: the first group contains dipeptides and tripeptides with terminal Glu or Asp, while the second peptides comprises more amino acids without significant features. The research on the structure and taste characteristics of second group peptides are less studied, so we focus on this group...
April 15, 2017: Food Chemistry
Yuanfei Zhou, Jiao Ren, Tongxing Song, Jian Peng, Hongkui Wei
The mammalian target of rapamycin complex 1 (mTORC1) integrates amino acid (AA) availability to support protein synthesis and cell growth. Taste receptor type 1 member (T1R) is a G protein-coupled receptor that functions as a direct sensor of extracellular AA availability to regulate mTORC1 through Ca(2+) stimulation and extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation. However, the roles of specific AAs in T1R1/T1R3-regulated mTORC1 are poorly defined. In this study, T1R1 and T1R3 subunits were expressed in C2C12 myotubes, and l-AA sensing was accomplished by T1R1/T1R3 to activate mTORC1...
October 11, 2016: International Journal of Molecular Sciences
Liufeng Zheng, Wei Zhang, Yuanfei Zhou, Fengna Li, Hongkui Wei, Jian Peng
The mammalian target of rapamycin (mTOR) is the central regulator of mammalian cell growth, and is essential for the formation of two structurally and functionally distinct complexes: mTORC1 and mTORC2. mTORC1 can sense multiple cues such as nutrients, energy status, growth factors and hormones to control cell growth and proliferation, angiogenesis, autophagy, and metabolism. As one of the key environmental stimuli, amino acids (AAs), especially leucine, glutamine and arginine, play a crucial role in mTORC1 activation, but where and how AAs are sensed and signal to mTORC1 are not fully understood...
September 29, 2016: International Journal of Molecular Sciences
YanHong Wang, JunQiang Liu, Hui Wu, XingTang Fang, Hong Chen, ChunLei Zhang
PURPOSE: The mechanism of dietary amino acids in regulating milk protein synthesis at the translational level is not well understood. Numerous studies have shown that the amino acid signal is transferred through the mammalian target of rapamycin (mTOR) pathway; however, the extracellular amino acid-sensing mechanism that activates mTOR complex 1 is unknown. We tested the hypotheses that the T1R1/T1R3 heterodimer functions as a direct sensor of the fed state and amino acid availability preceding the mTOR pathway and affects milk protein synthesis in mammary epithelial cells...
August 18, 2016: European Journal of Nutrition
Katarzyna Stańska, Antonii Krzeski
In the diversity of the flavor world only five basic tastes have been described. The newest one, umami, has been identified about one hundred years ago by Kikunae Ikeda but widely accepted just in the second half of the twentieth century by international scientific world. There are three umami substances: monosodium glutamate (MSG), inosine-5'-monophosphate (IMP), guanylo-5'-monophosphate (GMP). A real breakthrough in umami history concerned the finding about independent receptors for umami: T1R1 and T1R3 (taste receptors type 1 member 1 and member 3)...
June 30, 2016: Otolaryngologia Polska
Sae Ryun Ahn, Ji Hyun An, Hyun Seok Song, Jin Wook Park, Sang Hun Lee, Jae Hyun Kim, Jyongsik Jang, Tai Hyun Park
For several decades, significant efforts have been made in developing artificial taste sensors to recognize the five basic tastes. So far, the well-established taste sensor is an E-tongue, which is constructed with polymer and lipid membranes. However, the previous artificial taste sensors have limitations in various food, beverage, and cosmetic industries because of their failure to mimic human taste reception. There are many interactions between tastants. Therefore, detecting the interactions in a multiplexing system is required...
August 23, 2016: ACS Nano
Eriko Nango, Shuji Akiyama, Saori Maki-Yonekura, Yuji Ashikawa, Yuko Kusakabe, Elena Krayukhina, Takahiro Maruno, Susumu Uchiyama, Nipawan Nuemket, Koji Yonekura, Madoka Shimizu, Nanako Atsumi, Norihisa Yasui, Takaaki Hikima, Masaki Yamamoto, Yuji Kobayashi, Atsuko Yamashita
Sweet and umami tastes are perceived by T1r taste receptors in oral cavity. T1rs are class C G-protein coupled receptors (GPCRs), and the extracellular ligand binding domains (LBDs) of T1r1/T1r3 and T1r2/T1r3 heterodimers are responsible for binding of chemical substances eliciting umami or sweet taste. However, molecular analyses of T1r have been hampered due to the difficulties in recombinant expression and protein purification, and thus little is known about mechanisms for taste perception. Here we show the first molecular view of reception of a taste substance by a taste receptor, where the binding of the taste substance elicits a different conformational state of T1r2/T1r3 LBD heterodimer...
2016: Scientific Reports
Ryusuke Yoshida, Yuzo Ninomiya
The taste system of animals is used to detect valuable nutrients and harmful compounds in foods. In humans and mice, sweet, bitter, salty, sour and umami tastes are considered the five basic taste qualities. Sweet and umami tastes are mediated by G-protein-coupled receptors, belonging to the T1R (taste receptor type 1) family. This family consists of three members (T1R1, T1R2 and T1R3). They function as sweet or umami taste receptors by forming heterodimeric complexes, T1R1+T1R3 (umami) or T1R2+T1R3 (sweet)...
March 1, 2016: Biochemical Journal
Silvia Quaresima, Andrea Balla, Giancarlo D'Ambrosio, Paolo Bruzzone, Pietro Ursi, Emanuele Lezoche, Alessandro M Paganini
PURPOSE: The aim of this study is to evaluate the safety and efficacy of endoluminal loco-regional resection (ELRR) by transanal endoscopic microsurgery (TEM) after R1 endoscopic resection or local recurrence of early rectal cancer after operative endoscopy. MATERIAL AND METHODS: Twenty patients with early rectal cancer were enrolled, including patients with incomplete endoscopic resection, or complete endoscopic resection of a tumor with unfavorable prognostic factors (group A, ten patients), and local recurrence after endoscopic removal (group B, ten patients)...
2016: Minimally Invasive Therapy & Allied Technologies: MITAT
S Pal Choudhuri, R J Delay, E R Delay
G-protein-coupled receptors are thought to be involved in the detection of umami and L-amino acid taste. These include the heterodimer taste receptor type 1 member 1 (T1r1)+taste receptor type 1 member 3 (T1r3), taste and brain variants of mGluR4 and mGluR1, and calcium sensors. While several studies suggest T1r1+T1r3 is a broadly tuned lLamino acid receptor, little is known about the function of metabotropic glutamate receptors (mGluRs) in L-amino acid taste transduction. Calcium imaging of isolated taste sensory cells (TSCs) of T1r3-GFP and T1r3 knock-out (T1r3 KO) mice was performed using the ratiometric dye Fura 2 AM to investigate the role of different mGluRs in detecting various L-amino acids and inosine 5' monophosphate (IMP)...
March 1, 2016: Neuroscience
Shoichiro Kokabu, Jonathan W Lowery, Takashi Toyono, Yuji Seta, Suzuro Hitomi, Tsuyoshi Sato, Yuichiro Enoki, Masahiko Okubo, Yosuke Fukushima, Tetsuya Yoda
T1R3 is a T1R class of G protein-coupled receptors, composing subunit of the umami taste receptor when complexed with T1R1. T1R3 was originally discovered in gustatory tissue but is now known to be expressed in a wide variety of tissues and cell types such the intestine, pancreatic β-cells, skeletal muscle, and heart. In addition to taste recognition, the T1R1/T1R3 complex functions as an amino acid sensor and has been proposed to be a control mechanism for the secretion of hormones, such as cholecystokinin, insulin, and duodenal HCO3(-) and activates the mammalian rapamycin complex 1 (MTORC1) to inhibit autophagy...
December 25, 2015: Biochemical and Biophysical Research Communications
Wei-Hau Peng, Yat-Pang Chau, Kuo-Shyan Lu, Hsiu-Ni Kung
Arecoline, a major alkaloid in areca nuts, is involved in the pathogenesis of oral diseases. Mammalian taste buds are the structural unit for detecting taste stimuli in the oral cavity. The effects of arecoline on taste bud morphology are poorly understood. Arecoline was injected intraperitoneally (IP) into C57BL/6 mice twice daily for 1-4 weeks. After arecoline treatment, the vallate papillae were processed for electron microscopy and immunohistochemistry analysis of taste receptor proteins (T1R2, T1R3, T1R1, and T2R) and taste associated proteins (α-gustducin, PLCβ2, and SNAP25)...
January 2016: Chemical Senses
Y Liu, X Kong, F Li, B Tan, Y Li, Y Duan, Y Yin, J He, C Hu, F Blachier, Guoyao Wu
A total of 96 barrows (48 pure-bred Bama mini-pigs representing fatty genotype, and 48 Landrace pigs representing lean genotype) were randomly assigned to either a low- or adequate-protein treatment diet. The experimental period commenced at 5 weeks of age and extended to the finishing period. After euthanasia, blood and skeletal muscle samples were collected from pigs at the nursery, growing, and finishing phases. Our results indicate that the concentrations of free AAs in the plasma and muscle decreased as the age of the pigs increased...
January 2016: Amino Acids
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"