Read by QxMD icon Read


Cui Zhang, Liang Li, Yuanda Jiang, Cuicui Wang, Baoming Geng, Yanqiu Wang, Jianling Chen, Fei Liu, Peng Qiu, Guangjie Zhai, Ping Chen, Renfu Quan, Jinfu Wang
Bone formation is linked with osteogenic differentiation of mesenchymal stem cells (MSCs) in the bone marrow. Microgravity in spaceflight is known to reduce bone formation. In this study, we used a real microgravity environment of the SJ-10 Recoverable Scientific Satellite to examine the effects of space microgravity on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). hMSCs were induced toward osteogenic differentiation for 2 and 7 d in a cell culture device mounted on the SJ-10 Satellite...
March 13, 2018: FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology
Peng Yuan, Vincent Koppelmans, Patricia Reuter-Lorenz, Yiri De Dios, Nichole Gadd, Scott Wood, Roy Riascos, Igor Kofman, Jacob Bloomberg, Ajitkumar Mulavara, Rachael Seidler
Head-down-tilt bed rest (HDBR) is frequently utilized as a spaceflight analog research environment to study the effects of axial body unloading and fluid shifts that are associated with spaceflight in the absence of gravitational modifications. HDBR has been shown to result in balance changes, presumably due to sensory reweighting and adaptation processes. Here, we examined whether HDBR results in changes in the neural correlates of vestibular processing. Thirteen men participated in a 70-day HDBR intervention; we measured balance, functional mobility, and functional brain activity in response to vestibular stimulation at 7 time points before, during, and after HDBR...
March 12, 2018: Human Brain Mapping
Afshin Beheshti, Egle Cekanaviciute, David J Smith, Sylvain V Costes
Spaceflight introduces a combination of environmental stressors, including microgravity, ionizing radiation, changes in diet and altered atmospheric gas composition. In order to understand the impact of each environmental component on astronauts it is important to investigate potential influences in isolation. Rodent spaceflight experiments involve both standard vivarium cages and animal enclosure modules (AEMs), which are cages used to house rodents in spaceflight. Ground control AEMs are engineered to match the spaceflight environment...
March 8, 2018: Scientific Reports
Matthieu Komorowski, Sarah Fleming, Mala Mawkin, Jochen Hinkelbein
Future space exploration missions will take humans far beyond low Earth orbit and require complete crew autonomy. The ability to provide anaesthesia will be important given the expected risk of severe medical events requiring surgery. Knowledge and experience of such procedures during space missions is currently extremely limited. Austere and isolated environments (such as polar bases or submarines) have been used extensively as test beds for spaceflight to probe hazards, train crews, develop clinical protocols and countermeasures for prospective space missions...
2018: NPJ Microgravity
Noam Alperin, Ahmet M Bagci
OBJECTIVE: Most of the astronauts onboard the International Space Station (ISS) develop visual impairment and ocular structural changes that are not fully reversible upon return to earth. Current understanding assumes that the so-called visual impairments/intracranial pressure (VIIP) syndrome is caused by cephalad vascular fluid shift. This study assesses the roles of cerebrospinal fluid (CSF) and intracranial pressure (ICP) in VIIP. MATERIALS AND METHODS: Seventeen astronauts, 9 who flew a short-duration mission on the space shuttle (14...
2018: Acta Neurochirurgica. Supplement
Patricia Fajardo-Cavazos, Joshua D Leehan, Wayne L Nicholson
The effect of Bacillus subtilis exposure to the human spaceflight environment on growth, mutagenic frequency, and spectrum of mutations to rifampicin resistance (RifR ) was investigated. B. subtilis cells were cultivated in Biological Research in Canister-Petri Dish Fixation Units (BRIC-PDFUs) on two separate missions to the International Space Station (ISS), dubbed BRIC-18 and BRIC-21, with matching asynchronous ground controls. No statistically significant difference in either growth or in the frequency of mutation to RifR was found in either experiment...
2018: Frontiers in Microbiology
Peng Yuan, Vincent Koppelmans, Patricia Reuter-Lorenz, Yiri De Dios, Nichole Gadd, Roy Riascos, Igor Kofman, Jacob Bloomberg, Ajitkumar Mulavara, Rachael D Seidler
Head-down tilt bed rest (HDBR) has been used as a spaceflight analog to study some of the effects of microgravity on human physiology, cognition, and sensorimotor functions. Previous studies have reported declines in balance control and functional mobility after spaceflight and HDBR. Here we investigated how the brain activation for foot movement changed with HDBR. Eighteen healthy men participated in the current HDBR study. They were in a 6{degree sign} head-down tilt position continuously for 70 days. Functional MRI scans were acquired to estimate brain activation for foot movement pre-, during- and post-HDBR...
February 28, 2018: Journal of Neurophysiology
Tobias Niederwieser, Patrick Kociolek, David Klaus
An Environmental Control and Life Support System (ECLSS) is necessary for humans to survive in the hostile environment of space. As future missions move beyond Earth orbit for extended durations, reclaiming human metabolic waste streams for recycled use becomes increasingly important. Historically, these functions have been accomplished using a variety of physical and chemical processes with limited recycling capabilities. In contrast, biological systems can also be incorporated into a spacecraft to essentially mimic the balance of photosynthesis and respiration that occurs in Earth's ecosystem, along with increasing the reuse of biomass throughout the food chain...
February 2018: Life Sciences in Space Research
Claire Ward, Trisha A Rettig, Savannah Hlavacek, Bailey A Bye, Michael J Pecaut, Stephen K Chapes
Spaceflight has been shown to suppress the adaptive immune response, altering the distribution and function of lymphocyte populations. B lymphocytes express highly specific and highly diversified receptors, known as immunoglobulins (Ig), that directly bind and neutralize pathogens. Ig diversity is achieved through the enzymatic splicing of gene segments within the genomic DNA of each B cell in a host. The collection of Ig specificities within a host, or Ig repertoire, has been increasingly characterized in both basic research and clinical settings using high-throughput sequencing technology (HTS)...
February 2018: Life Sciences in Space Research
Paul Childress, Alexander Brinker, Cynthia-May S Gong, Jonathan Harris, David J Olivos, Jeffrey D Rytlewski, David C Scofield, Sungshin Y Choi, Yasaman Shirazi-Fard, Todd O McKinley, Tien-Min G Chu, Carolynn L Conley, Nabarun Chakraborty, Rasha Hammamieh, Melissa A Kacena
Segmental bone defects (SBDs) secondary to trauma invariably result in a prolonged recovery with an extended period of limited weight bearing on the affected limb. Soldiers sustaining blast injuries and civilians sustaining high energy trauma typify such a clinical scenario. These patients frequently sustain composite injuries with SBDs in concert with extensive soft tissue damage. For soft tissue injury resolution and skeletal reconstruction a patient may experience limited weight bearing for upwards of 6 months...
February 2018: Life Sciences in Space Research
R Schroeder
Biocompatible materials that can encapsulate large amounts of nutrients while protecting them from degrading environmental influences are highly desired for extended manned spaceflight. In this study, alkaline-degradable microgels based on poly(N-vinylcaprolactam) (PVCL) were prepared and analysed with their regard to stabilise retinol which acts as a model vitamin (vitamin A1 ). It was investigated whether the secondary crosslinking of the particles with a polyphenol can prevent the isomerisation of biologically active all-trans retinol to biologically inactive cis-trans retinol...
February 2018: Life Sciences in Space Research
E A Radugina, E A C Almeida, E Blaber, V A Poplinskaya, Y V Markitantova, E N Grigoryan
Mechanical unloading in microgravity during spaceflight is known to cause muscular atrophy, changes in muscle fiber composition, gene expression, and reduction in regenerative muscle growth. Although some limited data exists for long-term effects of microgravity in human muscle, these processes have mostly been studied in rodents for short periods of time. Here we report on how long-term (30-day long) mechanical unloading in microgravity affects murine muscles of the femoral Quadriceps group. To conduct these studies we used muscle tissue from 6 microgravity mice, in comparison to habitat (7), and vivarium (14) ground control mice from the NASA Biospecimen Sharing Program conducted in collaboration with the Institute for Biomedical Problems of the Russian Academy of Sciences, during the Russian Bion M1 biosatellite mission in 2013...
February 2018: Life Sciences in Space Research
Yuri Griko, Matthew D Regan
Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space...
February 2018: Life Sciences in Space Research
Benjamin D Johansen, Rebecca S Blue, Tarah L Castleberry, Erik L Antonsen, James M Vanderploeg
INTRODUCTION: With the development of the commercial space industry, growing numbers of spaceflight participants will engage in activities with a risk for pulmonary injuries, including pneumothorax, ebullism, and decompression sickness, as well as other concomitant trauma. Medical triage capabilities for mishaps involving pulmonary conditions have not been systematically reviewed. Recent studies have advocated the use of point-of-care ultrasound to screen for lung injury or illness. The operational utility of portable ultrasound systems in disaster relief and other austere settings may be relevant to commercial spaceflight...
February 1, 2018: Aerospace Medicine and Human Performance
Erik L Antonsen, Robert A Mulcahy, David Rubin, Rebecca S Blue, Michael A Canga, Ronak Shah
INTRODUCTION: The provision of medical care in exploration-class spaceflight is limited by mass, volume, and power constraints, as well as limitations of available skillsets of crewmembers. A quantitative means of exploring the risks and benefits of inclusion or exclusion of onboard medical capabilities may help to inform the development of an appropriate medical system. A pilot project was designed to demonstrate the utility of an early tradespace analysis tool for identifying high-priority resources geared toward properly equipping an exploration mission medical system...
February 1, 2018: Aerospace Medicine and Human Performance
(no author information available yet)
No abstract text is available yet for this article.
February 15, 2018: Nature
Guofu Shen, Schuyler Link, Sandeep Kumar, Derek M Nusbaum, Dennis Y Tse, Yingbin Fu, Samuel M Wu, Benjamin J Frankfort
Elevated intracranial pressure (ICP) can result in multiple neurologic sequelae including vision loss. Inducible models of ICP elevation are lacking in model organisms, which limits our understanding of the mechanism by which increased ICP impacts the visual system. We adapted a mouse model for the sustained elevation of ICP and tested the hypothesis that elevated ICP impacts the optic nerve and retinal ganglion cells (RGCs). ICP was elevated and maintained for 2 weeks, and resulted in multiple anatomic changes that are consistent with human disease including papilledema, loss of physiologic cupping, and engorgement of the optic nerve head...
February 12, 2018: Scientific Reports
Anita Dittrich, Daniela Grimm, Jayashree Sahana, Johann Bauer, Marcus Krüger, Manfred Infanger, Nils E Magnusson
BACKGROUND/AIMS: Cardiovascular complications are common in astronauts returning from a prolonged spaceflight. These health problems might be driven by complex modulations of gene expression and protein synthesis in endothelial cells (ECs). Studies on the influence of microgravity on phenotype, growth pattern and biological processes of ECs can help to understand these complications. METHODS: We exposed ECs (EA.hy926) to a Random Positioning Machine (RPM). Proteins associated with cell structure, angiogenesis and endothelial dysfunction were investigated in distinct pools of multicellular spheroids (MCS), adherent cells (AD) and tubular structures (TS) formed after a 35-day RPM-exposure...
January 24, 2018: Cellular Physiology and Biochemistry
Millard F Reschke, Scott J Wood, Gilles Clément
BACKGROUND: Ground-based studies have reported shifts of the vestibulo-ocular reflex (VOR) slow phase velocity (SPV) axis toward the resultant gravito-inertial force vector. The VOR was examined during eccentric roll rotation before, during and after an 8-day orbital mission. On orbit this vector is aligned with the head z-axis. Our hypothesis was that eccentric roll rotation on orbit would generate horizontal eye movements. METHODS: Two subjects were rotated in a semi-supine position with the head nasal-occipital axis parallel to the axis of rotation and 0...
2018: Journal of Vestibular Research: Equilibrium & Orientation
Cheng-Fei Li, Jia-Xing Sun, Yuan Gao, Fei Shi, Yi-Kai Pan, Yong-Chun Wang, Xi-Qing Sun
Individuals exposed to long-term spaceflight often experience cardiovascular dysfunctions characterized by orthostatic intolerance, disability on physical exercise, and even frank syncope. Recent studies have showed that the alterations of cardiovascular system are closely related to the functional changes of endothelial cells. We have shown previously that autophagy can be induced by simulated microgravity in human umbilical vein endothelial cells (HUVECs). However, the mechanism of enhanced autophagy induced by simulated microgravity and its role in the regulation of endothelial function still remain unclear...
February 2, 2018: Cell Death & Disease
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"