Read by QxMD icon Read

Cellular trafficking

Dongjie Fan, Shunan Cao, Qiming Zhou, You Zhang, Lei Yue, Chang Han, Bo Yang, Yu Wang, Zhuo Ma, Lingxiang Zhu, Chuanpeng Liu
Trigger factor (TF) is a key component of the prokaryotic chaperone network, which is involved in many basic cellular processes, such as protein folding, protein trafficking, and ribosome assembly. The major chaperone site of TF has a cradle-like structure in which protein substrate may fold without interference from other proteins. Here, we investigated in vivo and in vitro the roles of hydrophobic and charged patches on the edge and interior of cradle during TF-assisted protein folding. Our results showed that most of the surface of the cradle was involved in TF-assisted protein folding, which was larger than found in early studies...
June 15, 2018: FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology
Meng-Ling Chen, Ruey-Meei Wu
Parkinson's disease (PD) is the most common movement disorder and manifests as resting tremor, rigidity, bradykinesia, and postural instability. Pathologically, PD is characterized by selective loss of dopaminergic neurons in the substantia nigra and the formation of intracellular inclusions containing α-synuclein and ubiquitin called Lewy bodies. Consequently, a remarkable deficiency of dopamine in the striatum causes progressive disability of motor function. The etiology of PD remains uncertain. Genetic variability in leucine-rich repeat kinase 2 (LRRK2) is the most common genetic cause of sporadic and familial PD...
June 14, 2018: Journal of Biomedical Science
Bouchra Edderkaoui, Liana Sargsyan, Alisa Hetrick, Hongzhe Li
Cochlear inflammatory response to various environmental insults, including acoustic and ototoxic overexposures, has been increasingly become a topic of interest. As the immune response is associated with both pathology and protection, targeting specific components of the immune response is expected to dissect the relationships between cellular damage and inflammation-associated protection and repair in the cochlea. Duffy antigen receptor for chemokines (DARC) is a member of a group of atypical chemokine receptors, and essential for chemokine-regulated leukocyte/neutrophil trafficking during inflammation...
2018: Frontiers in Molecular Neuroscience
Beata Greb-Markiewicz, Mirosław Zarębski, Andrzej Ożyhar
Neuronal Per-Arnt-Sim (PAS) domain-containing protein 4 (NPAS4) is a basic helix-loop-helix (bHLH)-PAS transcription factor that was first discovered in neurons in the neuronal layer of the mammalian hippocampus and was later discovered in pancreatic β-cells. NPAS4 has been proposed as a therapeutic target not only for depression and neurodegenerative diseases associated with synaptic dysfunction but also for type 2 diabetes and pancreas transplantation. The ability of bHLH-PAS proteins to fulfil their function depends on their intracellular trafficking, which is regulated by specific sequences, i...
June 13, 2018: Journal of Biological Chemistry
Katja L Vogt, Charlotte Summers, Edwin R Chilvers, Alison M Condliffe
The activation status of neutrophils can cycle from basal through primed to fully activated ('green-amber-red'), and at least in vitro, primed cells can spontaneously revert to a near basal phenotype. This broad range of neutrophil responsiveness confers extensive functional flexibility, allowing neutrophils to respond rapidly and appropriately to varied and evolving threats throughout the body. Primed and activated cells display dramatically enhanced bactericidal capacity (including augmented respiratory burst activity, degranulation and longevity), but this enhancement also confers the capacity for significant unintended tissue injury...
June 13, 2018: European Journal of Clinical Investigation
Dominic L Maderazo, Jennifer A Flegg, Melanie R Neeland, Michael J de Veer, Mark B Flegg
The immune system mounts a response to an infection by activating T cells. T cell activation occurs when dendritic cells, which have already interacted with the pathogen, scan a T cell that is cognate for (responsive to) the pathogen. This often occurs inside lymph nodes. The time it takes for this scanning event to occur, indeed the probability that it will occur at all, depends on many factors, including the rate that T cells and dendritic cells enter and leave the lymph node as well as the geometry of the lymph node and of course other cellular and molecular parameters...
June 9, 2018: Journal of Theoretical Biology
Shuxin Wang, Aneesa T Al-Soodani, Geoffrey C Thomas, Bethany Buck-Koehntop, Kenneth J Woycechowsky
Selenocysteine (Sec) has received a lot of attention as a potential anti-cancer drug. However, its broad cytotoxicity limits its therapeutic usefulness. Thus, Sec is an attractive candidate for targeted drug delivery. Here, we demonstrate for the first time that an engineered version of the capsid formed by Aquifex aeolicus lumazine synthase (AaLS) can act as a nanocarrier for delivery of Sec to cells. Specifically, a previously reported variant of AaLS (AaLS-IC), which contains a single cysteine per subunit that projects into the capsid interior, was modified by reaction with the diselenide dimer of Sec (Sec2) to generate a selenenylsulfide conjugate between the capsid and Sec (AaLS-IC-Sec)...
June 12, 2018: Bioconjugate Chemistry
Stine Kjaer Morthorst, Søren Tvorup Christensen, Lotte Bang Pedersen
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output...
June 12, 2018: FEBS Journal
Akiko Sumitomo, Hiroshi Yukitake, Kazuko Hirai, Kouta Horike, Keisho Ueta, Youjin Chung, Eiji Warabi, Toru Yanagawa, Shiho Kitaoka, Tomoyuki Furuyashiki, Shuh Narumiya, Tomoo Hirano, Minae Niwa, Etienne Sibille, Takatoshi Hikida, Takeshi Sakurai, Koko Ishizuka, Akira Sawa, Toshifumi Tomoda
Autophagy plays an essential role in intracellular degradation and maintenance of cellular homeostasis in all cells, including neurons. Although a recent study reported a copy number variation of Ulk2, a gene essential for initiating autophagy, associated with a case of schizophrenia (SZ), it remains to be studied whether Ulk2 dysfunction could underlie the pathophysiology of the disease. Here we show that Ulk2 heterozygous (Ulk2+/-) mice have upregulated expression of sequestosome-1/p62, an autophagy-associated stress response protein, predominantly in pyramidal neurons of the prefrontal cortex (PFC), and exhibit behavioral deficits associated with the PFC functions, including attenuated sensorimotor gating and impaired cognition...
June 8, 2018: Human Molecular Genetics
Nicholas P Greene, Elise Kaplan, Allister Crow, Vassilis Koronakis
The MacB ABC transporter forms a tripartite efflux pump with the MacA adaptor protein and TolC outer membrane exit duct to expel antibiotics and export virulence factors from Gram-negative bacteria. Here, we review recent structural and functional data on MacB and its homologs. MacB has a fold that is distinct from other structurally characterized ABC transporters and uses a unique molecular mechanism termed mechanotransmission. Unlike other bacterial ABC transporters, MacB does not transport substrates across the inner membrane in which it is based, but instead couples cytoplasmic ATP hydrolysis with transmembrane conformational changes that are used to perform work in the extra-cytoplasmic space...
2018: Frontiers in Microbiology
Eunice Domínguez-Martín, Mariana Hernández-Elvira, Olivier Vincent, Roberto Coria, Ricardo Escalante
The endoplasmic reticulum (ER) is a membranous network with an intricate dynamic architecture necessary for various essential cellular processes. Nearly one third of the proteins trafficking through the secretory pathway are folded and matured in the ER. Additionally, it acts as calcium storage, and it is a main source for lipid biosynthesis. The ER is highly connected with other organelles through regions of membrane apposition that allow organelle remodeling, as well as lipid and calcium traffic. Cells are under constant changes due to metabolic requirements and environmental conditions that challenge the ER network’s maintenance...
June 10, 2018: Cells
Guillaume Desrochers, Jalal M Kazan, Arnim Pause
Cell surface receptors trigger the activation of signaling pathways to regulate key cellular processes, including cell survival and proliferation. Internalization, sorting and trafficking of activated receptors, therefore play a major role in the regulation and attenuation of cell signaling. Efficient sorting of endocytosed receptors is performed by the ESCRT machinery, which targets receptors for degradation by the sequential establishment of protein complexes. These events are tightly regulated and malfunction of ESCRT components can lead to abnormal trafficking, sustained signaling and promote tumor formation or progression...
June 7, 2018: Biochemistry and Cell Biology, Biochimie et Biologie Cellulaire
Victoria Ortega, Jacquelyn A Stone, Erik M Contreras, Ronald M Iorio, Hector C Aguilar
Glycosylation is a biologically important protein modification process by which a carbohydrate chain is enzymatically added to a protein at a specific amino acid residue. This process plays roles in many cellular functions, including intracellular trafficking, cell-cell signaling, protein folding, and receptor binding. While glycosylation is a common host cell process, it is utilized by many pathogens as well. Protein glycosylation is widely employed by viruses for both host invasion and evasion of host immune responses...
June 6, 2018: Glycobiology
Reka P Toth, Julie D Atkin
Neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia, and glaucoma, affect millions of people worldwide. ALS is caused by the loss of motor neurons in the spinal cord, brainstem, and brain, and genetic mutations are responsible for 10% of all ALS cases. Glaucoma is characterized by the loss of retinal ganglion cells and is the most common cause of irreversible blindness. Interestingly, mutations in OPTN , encoding optineurin, are associated with both ALS and glaucoma...
2018: Frontiers in Immunology
Allison R Hall, Corey L Anderson, Jennifer L Smith, Tooraj Mirshahi, Claude S Elayi, Craig T January, Brian P Delisle
KCNH2 encodes the Kv11.1 α-subunit that underlies the rapidly activating delayed-rectifier K+ current in the heart. Loss-of-function KCNH2 mutations cause long QT syndrome type 2 (LQT2), and most LQT2-linked missense mutations inhibit the trafficking of Kv11.1 channel protein to the cell surface membrane. Several trafficking-deficient LQT2 mutations (e.g., G601S) generate Kv11.1 proteins that are sequestered in a microtubule-dependent quality control (QC) compartment in the transitional endoplasmic reticulum (ER)...
2018: Frontiers in Physiology
J Zheng, X Nie, L He, A J Yoon, L Wu, X Zhang, M Vats, M D Schiff, L Xiang, Z Tian, J Ling, J J Mao
Cdc42, a Rho family small GTPase, regulates cytoskeleton organization, vesicle trafficking, and other cellular processes in development and homeostasis. However, Cdc42's roles in prenatal tooth development remain elusive. Here, we investigated Cdc42 functions in mouse enamel organ. Cdc42 showed highly dynamic temporospatial patterns in the developing enamel organ, with robust expression in the outer enamel epithelium, stellate reticulum (SR), and stratum intermedium layers. Strikingly, epithelium-specific Cdc42 deletion resulted in cystic lesions in the enamel organ...
June 1, 2018: Journal of Dental Research
Helena Chaytow, Yu-Ting Huang, Thomas H Gillingwater, Kiterie M E Faller
Ever since loss of survival motor neuron (SMN) protein was identified as the direct cause of the childhood inherited neurodegenerative disorder spinal muscular atrophy, significant efforts have been made to reveal the molecular functions of this ubiquitously expressed protein. Resulting research demonstrated that SMN plays important roles in multiple fundamental cellular homeostatic pathways, including a well-characterised role in the assembly of the spliceosome and biogenesis of ribonucleoproteins. More recent studies have shown that SMN is also involved in other housekeeping processes, including mRNA trafficking and local translation, cytoskeletal dynamics, endocytosis and autophagy...
June 5, 2018: Cellular and Molecular Life Sciences: CMLS
Arya A Das, Elizabeth Jacob
The ErbB signalling pathway has been studied extensively owing to its role in normal physiology and its dysregulation in cancer. Reverse engineering by mathematical models use the reductionist approach to characterize the network components. For an emergent, system-level view of the network, we propose a data analytics pipeline that can learn from the data generated by reverse engineering and use it to re-engineer the system with an agent-based approach. Data from a kinetic model that estimates the parameters by fitting to experiments on cell lines, were encoded into rules, for the interactions of the molecular species (agents) involved in biochemical reactions...
June 2018: Journal of Biosciences
Luciana Baroni, Letícia Pollo-Oliveira, Albert Jr Heck, Af Maarten Altelaar, Ana Patrícia Yatsuda
Apicomplexan parasites have unconventional actins that play a central role in important cellular processes such as apicoplast replication, motility of dense granules, endocytic trafficking and force generation for motility and host cell invasion. In this study, we investigated the actin of the apicomplexan Neospora caninum - a parasite associated with infectious abortion and neonatal mortality in livestock. Neospora caninum actin was detected and identified in two bands by one-dimensional (1D) western blot and in nine spots by the 2D technique...
June 6, 2018: Parasitology
Typhaine Anquetil, Bernard Payrastre, Marie-Pierre Gratacap, Julien Viaud
Our knowledge on the role of the different lipid messengers produced by phosphoinositide 3-kinases (PI3Ks) in normal and cancer cells as well as in platelets during arterial thrombosis has greatly expanded these last 15 years. PI3Ks are a family of lipid kinases that catalyze the phosphorylation of the D3 position of the inositol ring of phosphoinositides to produce phosphatidylinositol 3-phosphate (PtdIns3P), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2 ), and phosphatidylinositol-3,4,5 trisphosphate (PtdIns(3,4,5)P3 )...
June 4, 2018: Cancer Metastasis Reviews
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"