Read by QxMD icon Read

Biomaterial vaccine

B G De Geest
Biomaterials-based strategies to engineer the immune system have gathered considerable attention the past decade and have opened new avenues for vaccine delivery and for modulating the immune system to fight cancer. This review highlights some of these strategies that involve well-defined particle-based delivery systems that are constructed in a multistep fashion. Particular attention is devoted to the design of micro and nanoparticles to deliver antigen and molecular adjuvants to antigen presenting immune cell subsets in lymphatic tissue...
March 8, 2018: Molecular Immunology
Kyung-Ho Roh, Hannah W Song, Pallab Pradhan, Kevin Bai, Caitlin D Bohannon, Gordon Dale, Jardin Leleux, Joshy Jacob, Krishnendu Roy
B cells play a major role in the adaptive immune response by producing antigen-specific antibodies against pathogens and imparting immunological memory. Following infection or vaccination, antibody-secreting B cells and memory B cells are generated in specialized regions of lymph nodes and spleens, called germinal centers. Here, we report a fully synthetic ex-vivo system that recapitulates the generation of antigen-specific germinal-center (GC) like B cells using material-surface driven polyvalent signaling...
February 21, 2018: Biomaterials
Anett Stephan, Simone Hahn-Löbmann, Fred Rosche, Mirko Buchholz, Anatoli Giritch, Yuri Gleba
Colicins are natural non-antibiotic bacterial proteins with a narrow spectrum but an extremely high antibacterial activity. These proteins are promising food additives for the control of major pathogenic Shiga toxin-producing E. coli serovars in meats and produce. In the USA, colicins produced in edible plants such as spinach and leafy beets have already been accepted by the U. S. Food and Drug Administration (FDA) and U. S. Department of Agriculture (USDA) as food-processing antibacterials through the GRAS (generally recognized as safe) regulatory review process...
December 29, 2017: International Journal of Molecular Sciences
Michelle L Bookstaver, Shannon J Tsai, Jonathan S Bromberg, Christopher M Jewell
Polymers, lipids, scaffolds, microneedles, and other biomaterials are rapidly emerging as technologies to improve the efficacy of vaccines against infectious disease and immunotherapies for cancer, autoimmunity, and transplantation. New studies are also providing insight into the interactions between these materials and the immune system. This insight can be exploited for more efficient design of vaccines and immunotherapies. Here, we describe recent advances made possible through the unique features of biomaterials, as well as the important questions for further study...
February 2018: Trends in Immunology
John C Barrett, Bret D Ulery, Amanda Trent, Simon Liang, Natalie A David, Matthew V Tirrell
Inducing a strong and specific immune response is the hallmark of a successful vaccine. Nanoparticles have emerged as promising vaccine delivery devices to discover and elicit immune responses. Fine-tuning a nanoparticle vaccine to create an immune response with specific antibody and other cellular responses is influenced by many factors such as shape, size, and composition. Peptide amphiphile micelles are a unique biomaterials platform that can function as a modular vaccine delivery system, enabling control over many of these important factors and delivering payloads more efficiently to draining lymph nodes...
2017: ACS Biomaterials Science & Engineering
Qin Zeng, Peipei Zhang, Xiangbin Zeng, Lisa H Tostanoski, Christopher M Jewell
The continued challenges facing vaccines in infectious disease and cancer highlight a need for better control over the features of vaccines and the responses they generate. Biomaterials offer unique advantages to achieve this goal through features such as controlled release and co-delivery of antigens and adjuvants. However, many synthesis strategies lead to particles with heterogeneity in diameter, shape, loading level, or other properties. In contrast, advanced manufacturing techniques allow precision control of material properties at the micro- and nano-scale...
December 19, 2017: Biomaterials Science
Yuchen Fan, Rui Kuai, Yao Xu, Lukasz J Ochyl, Darrell J Irvine, James J Moon
Despite their potential, conventional whole-cell cancer vaccines prepared by freeze-thawing or irradiation have shown limited therapeutic efficacy in clinical trials. Recent studies have indicated that cancer cells treated with certain chemotherapeutics, such as mitoxantrone, can undergo immunogenic cell death (ICD) and initiate antitumor immune responses. However, it remains unclear how to exploit ICD for cancer immunotherapy. Here, we present a new material-based strategy for converting immunogenically dying tumor cells into a powerful platform for cancer vaccination and demonstrate their therapeutic potential in murine models of melanoma and colon carcinoma...
December 13, 2017: Nano Letters
(no author information available yet)
Daniulaityte R, Chen L, Lamy FR, Carlson RG, Thirunarayan K, Sheth A. "When 'Bad' is 'Good'": Identifying Personal Communication and Sentiment in Drug-Related Tweets. JMIR Public Health Surveill 2016 Oct 24;2(2):e162 Freedman RA, Viswanath K, Vaz-Luis I, Keating NL. Learning from social media: utilizing advanced data extraction techniques to understand barriers to breast cancer treatment. Breast Cancer Res Treat 2016 Jul;158(2):395-405 https://www.ncbi.nlm...
August 2017: Yearbook of Medical Informatics
James I Andorko, Christopher M Jewell
Recent research in the vaccine and immunotherapy fields has revealed that biomaterials have the ability to activate immune pathways, even in the absence of other immune-stimulating signals. Intriguingly, new studies reveal these responses are influenced by the physicochemical properties of the material. Nearly all of this work has been done in the vaccine and immunotherapy fields, but there is tremendous opportunity to apply this same knowledge to tissue engineering and regenerative medicine. This review discusses recent findings that reveal how material properties-size, shape, chemical functionality-impact immune response, and links these changes to emerging opportunities in tissue engineering and regenerative medicine...
June 2017: Bioengineering & Translational Medicine
M Farzaneh, F Attari, P E Mozdziak, S E Khoshnam
1. The avian embryo is an excellent model for studying embryology and the production of pharmaceutical proteins in transgenic chickens. Furthermore, chicken stem cells have the potential for proliferation and differentiation and emerged as an attractive tool for various cell-based technologies. 2. The objective of these studies is the derivation and culture of these stem cells is the production of transgenic birds for recombinant biomaterials and vaccine manufacture, drug and cytotoxicity testing, as well as to gain insight into basic science, including cell tracking...
December 2017: British Poultry Science
Lucy Doos, Claire Packer, Derek Ward, Sue Simpson, Andrew Stevens
OBJECTIVE: To describe and classify health technologies predicted in forecasting studies. DESIGN AND METHODS: A portrait describing health technologies predicted in 15 forecasting studies published between 1986 and 2010 that were identified in a previous systematic review. Health technologies are classified according to their type, purpose and clinical use; relating these to the original purpose and timing of the forecasting studies. DATA SOURCES: All health-related technologies predicted in 15 forecasting studies identified in a previously published systematic review...
July 31, 2017: BMJ Open
Daniella Calderon-Nieva, Kalhari Bandara Goonewardene, Susantha Gomis, Marianna Foldvari
Veterinary vaccine development has several similarities with human vaccine development to improve the overall health and well-being of species. However, veterinary goals lean more toward feasible large-scale administration methods and low cost to high benefit immunization. Since the respiratory mucosa is easily accessible and most infectious agents begin their infection cycle at the mucosa, immunization through the respiratory route has been a highly attractive vaccine delivery strategy against infectious diseases...
August 2017: Drug Delivery and Translational Research
Michele Graciotti, Cristiana Berti, Harm-Anton Klok, Lana Kandalaft
BACKGROUND: Immunotherapy consists of activating the patient's immune system to fight cancer and has the great potential of preventing future relapses thanks to immunological memory. A great variety of strategies have emerged to harness the immune system against tumors, from the administration of immunomodulatory agents that activate immune cells, to therapeutic vaccines or infusion of previously activated cancer-specific T cells. However, despite great recent progress many difficulties still remain, which prevent the widespread use of immunotherapy...
June 19, 2017: Journal of Translational Medicine
T Slavyanskaya, S -Salnikova
The development of personalized autologous dendritic cell anti-tumor vaccines (PDPW) against bladder cancer (BC) is a relevant issue that covers many aspects required for its standardization. The article presents personal experimental studies related to development of optimal conditions of transportation of biological material; temperature and temporary modes for the storage of the samples; the materials about the optimal method of disaggregation of the biomaterial; there has been shown a comparative analysis of different methods of tumor disaggregation; the selection of nutritious growth mediums and growth factors for urothelial carcinoma cells (UCC), the conditions of cryopreservation of tumor cells for maximum UCC viability, potentially suitable for creating PDPW against BC...
May 2017: Georgian Medical News
Chao Wang, Yanqi Ye, Quanyin Hu, Adriano Bellotti, Zhen Gu
Cancer immunotherapy, as a paradigm shift in cancer treatment, has recently received tremendous attention. The active cancer vaccination, immune checkpoint blockage (ICB) and chimeric antigen receptor (CAR) for T-cell-based adoptive cell transfer are among these developments that have achieved a significant increase in patient survival in clinical trials. Despite these advancements, emerging research at the interdisciplinary interface of cancer biology, immunology, bioengineering, and materials science is important to further enhance the therapeutic benefits and reduce side effects...
May 26, 2017: Advanced Materials
Sean H Kelly, Lucas S Shores, Nicole L Votaw, Joel H Collier
Biomaterials employed to raise therapeutic immune responses have become a complex and active field. Historically, vaccines have been developed primarily to fight infectious diseases, but recent years have seen the development of immunologically active biomaterials towards an expanding list of non-infectious diseases and conditions including inflammation, autoimmunity, wounds, cancer, and others. This review structures its discussion of these approaches around a progression from single-target strategies to those that engage increasingly complex and multifactorial immune responses...
May 15, 2017: Advanced Drug Delivery Reviews
Muhamed Adem, Dereje Beyene, Tileye Feyissa
Chloroplasts play a great role for sustained wellbeing of life on the planet. They have the power and raw materials that can be used as sophisticated biological factories. They are rich in energy as they have lots of pigment-protein complexes capable of collecting sunlight, in sugar produced by photosynthesis and in minerals imported from the plant cell. Chloroplast genome transformation offers multiple advantages over nuclear genome which among others, include: integration of the transgene via homologus recombination that enables to eliminate gene silencing and position effect, higher level of transgene expression resulting into higher accumulations of foreign proteins, and significant reduction in environmental dispersion of the transgene due to maternal inheritance which helps to minimize the major critic of plant genetic engineering...
2017: Plant Methods
Wenqian Dong, Huafeng Zhang, Xiaonan Yin, Yuying Liu, Degao Chen, Xiaoyu Liang, Xun Jin, Jiadi Lv, Jingwei Ma, Ke Tang, Zhuowei Hu, Xiaofeng Qin, Bo Huang
Exploiting gut mucosal immunity to design new antitumor vaccination strategy remains unexplored. Tumor cell-derived microparticles (T-MP) are natural biomaterials that are capable of delivering tumor antigens and innate signals to dendritic cells (DC) for tumor-specific T cell immunity. Here, we show that T-MPs by oral vaccination route effectively access and activate mucosal epithelium, leading to subsequent antitumor T cell responses. Oral vaccination of T-MPs generated potent inhibitory effect against the growth of B16 melanoma and CT26 colon cancer in mice, which required both T cell and DC activation...
2017: Oncoimmunology
Hangyu Zhang, Jaehyung Park, Yonghou Jiang, Kim A Woodrow
Self-assembling peptides programed by sequence design to form predefined nanostructures are useful for a variety of biomedical applications. However, assemblies of classic ionic self-complementary peptides are unstable in neutral pH, while charged peptide hydrogels have low mechanical strength. Here, we report on the rational design of a self-assembling peptide system with optimized charge distribution and density for bioscaffold development. Our designer peptides employs a sequence pattern that undergoes salt triggered self-assembly into β-sheet rich cationic nanofibers in the full pH range (pH 0-14)...
June 2017: Acta Biomaterialia
Wenzhen Liao, Tian-Tian Zhang, Liqian Gao, Su Seong Lee, Jie Xu, Han Zhang, Zhaogang Yang, Zhaoyu Liu, Wen Li
Designing new vaccines is one of the most challenging tasks for public health to prevent both infectious and chronic diseases. Even though many research scientists have spent great efforts in improving the specificity, sensitivity and safety of current available vaccines, there are still much space on how to effectively combine different biomaterials and technologies to design universal or personalized vaccines. Traditionally, vaccines were made based on empirical approaches designed to mimic immunity induced by natural infection...
2017: Current Topics in Medicinal Chemistry
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"