Read by QxMD icon Read


Ying Zhang, Qinqin Yu, Nan Jiang, Xu Yan, Chao Wang, Qingmei Wang, Jianzhong Liu, Muyuan Zhu, Sebastian Y Bednarek, Jian Xu, Jianwei Pan
Phototropism is the process by which plants grow towards light in order to maximize the capture of light for photosynthesis, which is particularly important for germinating seedlings. In Arabidopsis, hypocotyl phototropism is predominantly triggered by blue light (BL), which has a profound effect on the establishment of asymmetric auxin distribution, essential for hypocotyl phototropism. Two auxin efflux transporters ATP-BINDING CASSETTE B19 (ABCB19) and PIN-FORMED 3 (PIN3), are known to mediate the effect of BL on auxin distribution in the hypocotyl, but the details for how BL triggers PIN3 lateralization remain poorly understood...
October 22, 2016: Plant, Cell & Environment
Remedios Guzmán-Guillén, Alexandre Campos, Joana Machado, Marisa Freitas, Joana Azevedo, Edgar Pinto, Agostinho Almeida, Ana M Cameán, Vitor Vasconcelos
Natural toxins produced by freshwater cyanobacteria, such as cylindrospermopsin, have been regarded as an emergent environmental threat. Despite the risks for food safety, the impact of these water contaminants in agriculture is not yet fully understood. Carrots (Daucus carota) are root vegetables, extensively consumed worldwide with great importance for human nourishment and economy. It is, therefore, important to evaluate the possible effects of using water contaminated with cyanotoxins on carrot cultivation...
October 21, 2016: Ecotoxicology
Bahtijor Rasulov, Eero Talts, Ulo Niinemets
Plant isoprene emissions respond to light and temperature similarly to photosynthesis, but CO2-dependencies of isoprene emission and photosynthesis are profoundly different with photosynthesis increasing and isoprene emissions decreasing with increasing CO2 concentration due to reasons not yet understood. We studied isoprene emission, net assimilation rate and chlorophyll fluorescence under different CO2 and O2 concentrations in the strong isoprene emitter hybrid aspen (Populus tremula x P. tremuloides), and used rapid changes in ambient CO2 or O2 concentrations or light level to induce oscillations...
October 21, 2016: Plant Physiology
Anne-Sophie Dumas, Ludivine Taconnat, Evangelos Barbas, Guillem Rigaill, Olivier Catrice, Delphine Bernard, Abdelilah Benamar, David Macherel, Abdelhak El Amrani, Richard Berthomé
BACKGROUND: Higher plants have to cope with increasing concentrations of pollutants of both natural and anthropogenic origin. Given their capacity to concentrate and metabolize various compounds including pollutants, plants can be used to treat environmental problems - a process called phytoremediation. However, the molecular mechanisms underlying the stabilization, the extraction, the accumulation and partial or complete degradation of pollutants by plants remain poorly understood. RESULTS: Here, we determined the molecular events involved in the early plant response to phenanthrene, used as a model of polycyclic aromatic hydrocarbons...
October 21, 2016: BMC Genomics
Geeta Yadav, Prabhat Kumar Srivastava, Parul Parihar, Sanjesh Tiwari, Sheo Mohan Prasad
In order to know the impact of elevated level of UV-B on arsenic stressed Helianthus annuus L. var. DRSF-113 plants, certain physiological (growth - root and shoot lengths, their fresh masses and leaf area; photosynthetic competence and respiration) and biochemical parameters (pigments - Chl a and b, Car, anthocyanin and flavonoids; reactive oxygen species - superoxide radicals, H2O2; reactive carbonyl group, electrolyte leakage; antioxidants - superoxide dismutase, peroxidise, catalase, glutathione-S-transferase, proline) of their seedlings were analysed under the simultaneous exposures of two arsenic doses (6mgkg(-1) soil, As1; and 12mgkg(-1) soil, As2) and two UV-B doses (1...
October 13, 2016: Journal of Photochemistry and Photobiology. B, Biology
Florian A Busch, Rowan F Sage
The biochemical model of C3 photosynthesis by Farquhar, von Caemmerer and Berry (FvCB) assumes that photosynthetic CO2 assimilation is limited by one of three biochemical processes that are not always easily discerned. This leads to improper assessments of biochemical limitations that limit the accuracy of the model predictions. We use the sensitivity of rates of CO2 assimilation and photosynthetic electron transport to changes in O2 and CO2 concentration in the chloroplast to evaluate photosynthetic limitations...
October 21, 2016: New Phytologist
Yadvinder Malhi, Cécile A J Girardin, Gregory R Goldsmith, Christopher E Doughty, Norma Salinas, Daniel B Metcalfe, Walter Huaraca Huasco, Javier E Silva-Espejo, Jhon Del Aguilla-Pasquell, Filio Farfán Amézquita, Luiz E O C Aragão, Rossella Guerrieri, Françoise Yoko Ishida, Nur H A Bahar, William Farfan-Rios, Oliver L Phillips, Patrick Meir, Miles Silman
Why do forest productivity and biomass decline with elevation? To address this question, research to date generally has focused on correlative approaches describing changes in woody growth and biomass with elevation. We present a novel, mechanistic approach to this question by quantifying the autotrophic carbon budget in 16 forest plots along a 3300 m elevation transect in Peru. Low growth rates at high elevations appear primarily driven by low gross primary productivity (GPP), with little shift in either carbon use efficiency (CUE) or allocation of net primary productivity (NPP) between wood, fine roots and canopy...
October 21, 2016: New Phytologist
Víctor Resco de Dios, Arthur Gessler, Juan Pedro Ferrio, Josu G Alday, Michael Bahn, Jorge Del Castillo, Sébastien Devidal, Sonia García-Muñoz, Zachary Kayler, Damien Landais, Paula Martín-Gómez, Alexandru Milcu, Clément Piel, Karin Pirhofer-Walzl, Olivier Ravel, Serajis Salekin, David T Tissue, Mark G Tjoelker, Jordi Voltas, Jacques Roy
BACKGROUND: Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO2 and H2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron...
October 20, 2016: GigaScience
Lixia Xiang, Lipan Hu, Weinan Xu, Ai Zhen, Liang Zhang, Xiaohui Hu
Gamma-aminobutyric acid (GABA) is important in plant responses to environmental stresses. We wished to clarify the role of GABA in maintenance of photosynthesis in muskmelon seedlings (Cucumis melo L., cv. Yipintianxia) during saline-alkaline stress. To this end, we assessed the effect of GABA on the structure and function of the photosynthetic apparatus in muskmelon seedlings grown under saline-alkaline stress. These stresses in combination reduced net photosynthetic rate, gas-exchange, and inhibited photosystem II (PSII) electron transport as measured by the JIP-test...
2016: PloS One
Mina Momayyezi, Robert D Guy
In Populus trichocarpa (black cottonwood), net photosynthesis (An ) varies with latitude and, in northern genotypes, is supported by higher stomatal conductance (gs ). We report here a parallel cline in mesophyll conductance (gm ) and link this variation to carbonic anhydrase (CA) activity. Using concurrent carbon isotope discrimination and chlorophyll fluorescence methods, we examined the effects of acetazolamide, an inhibitor of CA, on gm in six representative genotypes (three from either end of the north-south cline)...
October 20, 2016: Plant, Cell & Environment
Liina Pajusalu, Georg Martin, Tiina Paalme, Arno Põllumäe
Anthropogenic carbon dioxide (CO2) emissions to the atmosphere are causing reduction in the global ocean pH, also known as ocean acidification. This change alters the equilibrium of different forms of dissolved inorganic carbon in seawater that macroalgae use for their photosynthesis. In the Baltic Sea, benthic macroalgae live in a highly variable environment caused by seasonality and rapid changes in meteorological conditions. The effect of increasing water CO2 concentration on the net photosynthesis of the red macroalgae Furcellaria lumbricalis (Hudson) Lamouroux was tested in short-term mesocosm experiments conducted in Kõiguste Bay (N Gulf of Riga) in June-July 2012 and 2013...
2016: PeerJ
Caiyun He, Guori Gao, Jianguo Zhang, Aiguo Duan, Hongmei Luo
BACKGROUND: Low temperature is one of the crucial environmental factors limiting the productivity and distribution of plants. Sea buckthorn (Hippophae rhamnoides L.), a well recognized multipurpose plant species, live successfully in in cold desert regions. But their molecular mechanisms underlying cold tolerance are not well understood. METHODS: Physiological and biochemical responses to low-temperature stress were studied in seedlings of sea buckthorn. Differentially expressed protein spots were analyzed using multiplexing fluorescent two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight (TOF/TOF) mass spectrometry (MS), the concentration of phytohormone was measured using enzyme-linked immunosorbent assay, and a spectrophotometric assay was used to measure enzymatic reactions...
2016: Proteome Science
Jooyeon Jeong, Kwangryul Baek, Henning Kirst, Anastasios Melis, EonSeon Jin
The Chlamydomonas reinhardtii truncated light-harvesting antenna 4 (tla4) DNA transposon mutant has a pale green phenotype, a lower chlorophyll (Chl) per cell and a higher Chl a/b ratio in comparison with the wild type. It required a higher light intensity for the saturation of photosynthesis and displayed a greater per chlorophyll light-saturated rate of oxygen evolution than the wild type. The Chl antenna size of the photosystems in the tla4 mutant was only about 65% of that measured in the wild type. Molecular genetic analysis revealed that a single plasmid DNA insertion disrupted two genes on chromosome 11 of the mutant...
October 17, 2016: Biochimica et Biophysica Acta
Mingming Wang, Wei Zhan
The grand scale, ultimate efficiency, and sustainability of natural photosynthesis have inspired generations of researchers in biomimetic light energy utilization. As an essential and ubiquitous component in all photosynthetic machinery, lipids and their assemblies have long been recognized as powerful molecular scaffolds in building artificial photosynthetic systems. Model lipid bilayers, such as black lipid membranes and liposomes (vesicles), have been extensively used to host natural as well as synthetic photo- and redox-active species, thereby enabling key photosynthetic processes, such as energy transfer and photoinduced electron transfer, to be examined in well-defined, natural-like membrane settings...
October 19, 2016: Accounts of Chemical Research
Yoshihiko Imanaka, Toshihisa Anazawa, Toshio Manabe, Hideyuki Amada, Sachio Ido, Fumiaki Kumasaka, Naoki Awaji, Gabriel Sánchez-Santolino, Ryo Ishikawa, Yuichi Ikuhara
The artificial photosynthesis technology known as the Honda-Fujishima effect, which produces oxygen and hydrogen or organic energy from sunlight, water, and carbon dioxide, is an effective energy and environmental technology. The key component for the higher efficiency of this reaction system is the anode electrode, generally composed of a photocatalyst formed on a glass substrate from electrically conductive fluorine-doped tin oxide (FTO). To obtain a highly efficient electrode, a dense film composed of a nanoparticulate visible light responsive photocatalyst that usually has a complicated multi-element composition needs to be deposited and adhered onto the FTO...
October 19, 2016: Scientific Reports
Stefano Papazian, Eliezer Khaling, Christelle Bonnet, Steve Lassueur, Philippe Reymond, Thomas Moritz, James Blande, Benedicte Riber Albrectsen
Plants have evolved adaptive mechanisms that allow them to tolerate a continuous range of abiotic and biotic stressors. Tropospheric ozone (O3), a global anthropogenic pollutant, directly affects living organisms and ecosystems, including plant-herbivore interactions. In this study, we investigate the stress responses of wild black mustard (Brassica nigra) exposed consecutively to O3 and the specialist herbivore Pieris brassicae. Transcriptomics and metabolomics data were evaluated using multivariate, correlation, and network analyses for the O3 and herbivory responses...
October 6, 2016: Plant Physiology
Karl J Niklas, Ulrich Kutschera
In 1790, the German poet Johann W. v. Goethe (1749-1832) proposed the concept of a hypothetical sessile organism known as the 'Plant Archetype,' which was subsequently reconstructed and depicted by 19th-century botanists, such as Franz Unger (1800-1870) and Julius Sachs (1832-1897), and can be considered one of the first expressions of Evo-Devo thinking. Here, we present the history of this concept in the context of Ernst Haeckel's (1834-1919) biogenetic law espoused in his Generelle Morphologie der Organismen of 1866...
October 18, 2016: Theory in Biosciences, Theorie in Den Biowissenschaften
Marta Pintó-Marijuan, Alba Cotado, Eva Fleta-Soriano, Sergi Munné-Bosch
Plants are known for their high capacity to acclimatise to fluctuating environmental conditions. A wide range of environmental conditions can lead to suboptimal physiological efficiency. However, recent studies have shown that plants can withstand repeated periods of stress. To find out how they do it, we studied photosynthetic adjustments to repeated water stress in Aptenia cordifolia: a facultative, invasive CAM species. Plants were subjected to three cycles of water deficit, and photosynthetic parameters and chloroplast antioxidants were quantified to gain an understanding of the mechanisms by which they cope with repeated stress periods...
October 18, 2016: Photosynthesis Research
D L Hoover, A K Knapp, M D Smith
Extreme heat waves and drought are predicted to increase in frequency and magnitude with climate change. These extreme events often co-occur, making it difficult to separate their direct and indirect effects on important ecophysiological and carbon cycling processes such as photosynthesis. Here, we assessed the independent and interactive effects of experimental heat waves and drought on photosynthesis in Andropogon gerardii, a dominant C4 grass in a native mesic grassland. We experimentally imposed a two-week heat wave at four intensity levels under two contrasting soil moisture regimes: a well-watered control and an extreme drought...
October 18, 2016: Oecologia
Yunpeng Wang, Lei Chen, Weiwen Zhang
BACKGROUND: 3-hydroxypropionic acid (3-HP) is an important platform chemical with a wide range of applications. In our previous study, the biosynthetic pathway of 3-HP was constructed and optimized in cyanobacterium Synechocystis sp. PCC 6803, which led to 3-HP production directly from CO2 at a level of 837.18 mg L(-1) (348.8 mg/g dry cell weight). As the production and accumulation of 3-HP in cells affect cellular metabolism, a better understanding of cellular responses to 3-HP synthesized internally in Synechocystis will be important for further increasing 3-HP productivity in cyanobacterial chassis...
2016: Biotechnology for Biofuels
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"