Read by QxMD icon Read

Dengue trafficking

Elena Bekerman, Gregory Neveu, Ana Shulla, Jennifer Brannan, Szu-Yuan Pu, Stanley Wang, Fei Xiao, Rina Barouch-Bentov, Russell R Bakken, Roberto Mateo, Jennifer Govero, Claude M Nagamine, Michael S Diamond, Steven De Jonghe, Piet Herdewijn, John M Dye, Glenn Randall, Shirit Einav
Global health is threatened by emerging viral infections, which largely lack effective vaccines or therapies. Targeting host pathways that are exploited by multiple viruses could offer broad-spectrum solutions. We previously reported that AAK1 and GAK, kinase regulators of the host adaptor proteins AP1 and AP2, are essential for hepatitis C virus (HCV) infection, but the underlying mechanism and relevance to other viruses or in vivo infections remained unknown. Here, we have discovered that AP1 and AP2 cotraffic with HCV particles in live cells...
February 27, 2017: Journal of Clinical Investigation
Yuan Tian, Alessandro Sette, Daniela Weiskopf
Dengue virus (DENV) has spread through most tropical and subtropical areas of the world and represents a serious public health problem. The control of DENV infection has not yet been fully successful due to lack of effective therapeutics or vaccines. Nevertheless, a better understanding of the immune responses against DENV infection may reveal new strategies for eliciting and improving antiviral immunity. T cells provide protective immunity against various viral infections by generating effector cells that cooperate to eliminate antigens and memory cells that can survive for long periods with enhanced abilities to control recurring pathogens...
2016: Frontiers in Immunology
Andrea Troupin, Devon Shirley, Berlin Londono-Renteria, Alan M Watson, Cody McHale, Alex Hall, Adam Hartstone-Rose, William B Klimstra, Gregorio Gomez, Tonya M Colpitts
Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious global human disease and mortality. Skin immune cells are an important component of initial DENV infection and systemic spread. Here, we show that mast cells are a target of DENV in human skin and that DENV infection of skin mast cells induces degranulation and alters cytokine and growth factor expression profiles. Importantly, to our knowledge, we also demonstrate for the first time that DENV localizes within secretory granules in infected skin mast cells...
October 31, 2016: Journal of Immunology: Official Journal of the American Association of Immunologists
Stefan W Metz, Shaomin Tian, Gabriel Hoekstra, Xianwen Yi, Michelle Stone, Katie Horvath, Michael J Miley, Joseph DeSimone, Chris J Luft, Aravinda M de Silva
Dengue virus (DENV) is the causative agent of dengue fever and dengue hemorrhagic fever. The virus is endemic in over 120 countries, causing over 350 million infections per year. Dengue vaccine development is challenging because of the need to induce simultaneous protection against four antigenically distinct DENV serotypes and evidence that, under some conditions, vaccination can enhance disease due to specific immunity to the virus. While several live-attenuated tetravalent dengue virus vaccines display partial efficacy, it has been challenging to induce balanced protective immunity to all 4 serotypes...
October 2016: PLoS Neglected Tropical Diseases
Yi-ying Chou, Christian Cuevas, Margot Carocci, Sarah H Stubbs, Minghe Ma, David K Cureton, Luke Chao, Frances Evesson, Kangmin He, Priscilla L Yang, Sean P Whelan, Susan R Ross, Tom Kirchhausen, Raphaël Gaudin
UNLABELLED: Virus entry into cells is a multistep process that often requires the subversion of subcellular machineries. A more complete understanding of these steps is necessary to develop new antiviral strategies. While studying the potential role of the actin network and one of its master regulators, the small GTPase Cdc42, during Junin virus (JUNV) entry, we serendipitously uncovered the small molecule ZCL278, reported to inhibit Cdc42 function as an entry inhibitor for JUNV and for vesicular stomatitis virus, lymphocytic choriomeningitis virus, and dengue virus but not for the nonenveloped poliovirus...
May 2016: Journal of Virology
Valerie A Villareal, Mary A Rodgers, Deirdre A Costello, Priscilla L Yang
Lipids are necessary for every step in the replication cycle of hepatitis C virus (HCV) and dengue virus (DENV), members of the family Flaviviridae. Recent studies have demonstrated that discrete steps in the replication cycles of these viruses can be inhibited by pharmacological agents that target host factors mediating lipid synthesis, metabolism, trafficking, and signal transduction. Despite this, targeting host lipid metabolism and trafficking as an antiviral strategy by blockade of entire pathways may be limited due to host toxicity...
December 2015: Antiviral Research
Luana E Piccini, Viviana Castilla, Elsa B Damonte
The endocytic uptake and intracellular trafficking for penetration of DENV-3 strain H-87 into Vero cells was analyzed by using several biochemical inhibitors and dominant negative mutants of cellular proteins. The results presented show that the infective entry of DENV-3 into Vero cells occurs through a non-classical endocytosis pathway dependent on low pH and dynamin, but non-mediated by clathrin. After uptake, DENV-3 transits through early endosomes to reach Rab 7-regulated late endosomes, and according with the half-time for ammonium chloride resistance viral nucleocapsid is released into the cytosol approximately at 12 min post-infection...
2015: PloS One
Qian Shu, Nicholas J Lennemann, Saumendra N Sarkar, Yoel Sadovsky, Carolyn B Coyne
Interferon stimulated genes (ISGs) target viruses at various stages of their infectious life cycles, including at the earliest stage of viral entry. Here we identify ArfGAP with dual pleckstrin homology (PH) domains 2 (ADAP2) as a gene upregulated by type I IFN treatment in a STAT1-dependent manner. ADAP2 functions as a GTPase-activating protein (GAP) for Arf6 and binds to phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and PI(3,4)P2. We show that overexpression of ADAP2 suppresses dengue virus (DENV) and vesicular stomatitis virus (VSV) infection in an Arf6 GAP activity-dependent manner, while exerting no effect on coxsackievirus B (CVB) or Sendai virus (SeV) replication...
September 2015: PLoS Pathogens
Qiang Fu, Bahar Inankur, John Yin, Rob Striker, Que Lan
Host factors that enable dengue virus (DENV) to propagate in the mosquito host cells are unclear. It is known that cellular cholesterol plays an important role in the life cycle of DENV in human host cells but unknown if the lipid requirements differ for mosquito versus mammalian. In mosquito Aedes aegypti, sterol carrier protein 2 (SCP-2) is critical for cellular cholesterol homeostasis. In this study, we identified SCP-2 as a critical host factor for DENV production in mosquito Aag2 cells. Treatment with a small molecule commonly referred to as SCPI-1, (N-(4-{[4-(3,4-dichlorophenyl)-1,3-thiazol-2-yl]amino}phenyl)acetamide hydrobromide, a known inhibitor of SCP-2, or knockdown of SCP-2 dramatically repressed the virus production in mosquito but not mammalian cells...
September 2015: Journal of Medical Entomology
Philippe Metz, Abhilash Chiramel, Laurent Chatel-Chaix, Gualtiero Alvisi, Peter Bankhead, Rodrigo Mora-Rodriguez, Gang Long, Anne Hamacher-Brady, Nathan R Brady, Ralf Bartenschlager
UNLABELLED: Autophagic flux involves formation of autophagosomes and their degradation by lysosomes. Autophagy can either promote or restrict viral replication. In the case of Dengue virus (DENV), several studies report that autophagy supports the viral replication cycle, and describe an increase of autophagic vesicles (AVs) following infection. However, it is unknown how autophagic flux is altered to result in increased AVs. To address this question and gain insight into the role of autophagy during DENV infection, we established an unbiased, image-based flow cytometry approach to quantify autophagic flux under normal growth conditions and in response to activation by nutrient deprivation or them TOR inhibitor Torin1...
August 2015: Journal of Virology
Ming Yuan Li, Marc Grandadam, Kevin Kwok, Thibault Lagache, Yu Lam Siu, Jing Shu Zhang, Kouxiong Sayteng, Mateusz Kudelko, Cheng Feng Qin, Jean-Christophe Olivo-Marin, Roberto Bruzzone, Pei Gang Wang
Membrane receptors at the surface of target cells are key host factors for virion entry; however, it is unknown whether trafficking and secretion of progeny virus requires host intracellular receptors. In this study, we demonstrate that dengue virus (DENV) interacts with KDEL receptors (KDELR), which cycle between the ER and Golgi apparatus, for vesicular transport from ER to Golgi. Depletion of KDELR by siRNA reduced egress of both DENV progeny and recombinant subviral particles (RSPs). Coimmunoprecipitation of KDELR with dengue structural protein prM required three positively charged residues at the N terminus, whose mutation disrupted protein interaction and inhibited RSP transport from the ER to the Golgi...
March 3, 2015: Cell Reports
Pratap Parida, R N S Yadav, Kishore Sarma
Dengue infections produce a distinct character of virus-induced intracellular membrane alterations which are associated with the viral replication machinery. Currently, the NS3 protein is being targeted for antiviral therapy against dengue. NS3 protein of dengue virus interacts with nuclear receptor binding protein (NRBP) of human causing cell trafficking between the Endoplasmic Reticulum (ER) and Golgi, which interacts with Rac3, a member of the Rho-GTPase family. No crystal structure of the NRBP is available for any species, thus limiting the complete understanding of structure- function relationships of this protein...
2014: Current Pharmaceutical Biotechnology
Wei-Chun Tang, Ren-Jye Lin, Ching-Len Liao, Yi-Ling Lin
UNLABELLED: Positive-sense RNA viruses, such as dengue virus (DENV), hijack the intracellular membrane machinery for their own replication. The Rab18 protein, a member of the Rab GTPase family, key regulators of membrane trafficking, is located on the organelles involved in DENV infection, such as the endoplasmic reticulum (ER) and lipid droplets (LDs). In this study, we addressed the potential involvement of Rab18 in DENV infection by using cells overexpressing the wild-type, GTP-bound active form, or GDP-bound inactive form of Rab18 and cells with Rab18 knockdown...
June 2014: Journal of Virology
Summer Zhang, Kuan Rong Chan, Hwee Cheng Tan, Eng Eong Ooi
The early events of the dengue virus life cycle involve virus binding, internalization, trafficking, and fusion. Fluorescently labeled viruses can be used to visualize these early processes. As dengue virus has 180 identical copies of the envelope protein attached to the membrane surface and is surrounded by a lipid membrane, amine-reactive (Alexa Fluor) or lipophilic (DiD) dyes can be used for virus labeling. These dyes are highly photostable and are ideal for studies involving cellular uptake and endosomal transport...
2014: Methods in Molecular Biology
Hongliang Wang, Jeffrey W Perry, Adam S Lauring, Petra Neddermann, Raffaele De Francesco, Andrew W Tai
BACKGROUND & AIMS: Positive-sense RNA viruses remodel intracellular membranes to generate specialized membrane compartments for viral replication. Several RNA viruses, including poliovirus and hepatitis C virus (HCV), require phosphatidylinositol (PI) 4-kinases for their replication. However, it is not known how PI 4-kinases and their product, PI(4)P, facilitate host membrane reorganization and viral replication. In addition, although the HCV replication compartment, known as the membranous web, is believed to be cholesterol enriched, the mechanisms by which this occurs have not been elucidated...
May 2014: Gastroenterology
Pratap Parida, R N S Yadav, Kishore Sarma, Lalit Mohan Nainwal
Currently dengue is a serious disease which has become a global burden in the last decade. Unfortunately, there are no effective drugs and vaccines against this disease. DENV non-structural protein (NS) 3, which is viral protease which is a potential target for antiviral therapy. Targeting this we performed homology modeling and protein-protein docking study of NS3 with NRBP (Nuclear Receptor Binding Protein) of human as it has been proved that NS3 of DENV interacts with NRBP which causes cellular trafficking in human cell...
2013: Current Pharmaceutical Biotechnology
Mazhar Hussain, Scott L O'Neill, Sassan Asgari
Argonaute proteins (AGOs) are vital components of the RNA-induced silencing complex in gene silencing. AGOs are indispensable for microRNA (miRNA) biogenesis as well as function, and are intracellularly localized to both the cytoplasm and the nucleus. Cytoplasmic AGO-miRNA complexes are mainly involved in cleavage or translational repression of target mRNAs while the nuclear ones are engaged in transcriptional gene silencing, methylation, chromatin remodeling, and splicing. In insects, AGO1 and AGO2 are involved in RNA interference and miRNA pathways but the components involved in their trafficking between the nucleus and the cytoplasm are not known...
December 2013: RNA Biology
Li-Wei Chu, Yi-Lung Huang, Jin-Hui Lee, Long-Ying Huang, Wei-Jun Chen, Ya-Hsuan Lin, Jyun-Yu Chen, Rui Xiang, Chau-Hwang Lee, Yueh-Hsin Ping
Dengue virus (DENV) is one of the major infectious pathogens worldwide. DENV infection is a highly dynamic process. Currently, no antiviral drug is available for treating DENV-induced diseases since little is known regarding how the virus interacts with host cells during infection. Advanced molecular imaging technologies are powerful tools to understand the dynamics of intracellular interactions and molecular trafficking. This study exploited a single-virus particle tracking technology to address whether DENV interacts with autophagy machinery during the early stage of infection...
January 2014: Journal of Biomedical Optics
Tanvi Agrawal, Peter Schu, Guruprasad R Medigeshi
Intracellular protein trafficking pathways are hijacked by viruses at various stages of viral life-cycle. Heterotetrameric adaptor protein complexes (APs) mediate vesicular trafficking at distinct intracellular sites and are essential for maintaining the organellar homeostasis. In the present study, we studied the effect of AP-1 and AP-3 deficiency on flavivirus infection in cells functionally lacking these proteins. We show that AP-1 and AP-3 participate in flavivirus life-cycle at distinct stages. AP-3-deficient cells showed delay in initiation of Japanese encephalitis virus and dengue virus RNA replication, which resulted in reduction of infectious virus production...
2013: Scientific Reports
Jacky Flipse, Jan Wilschut, Jolanda M Smit
Dengue is the most common arthropod-borne viral infection in humans with ∼50 million cases annually worldwide. In recent decades, a steady increase in the number of severe dengue cases has been seen. Severe dengue disease is most often observed in individuals that have pre-existing immunity against heterotypic dengue subtypes and in infants with low levels of maternal dengue antibodies. The generally accepted hypothesis explaining the immunopathogenesis of severe dengue is called antibody-dependent enhancement of dengue infection...
January 2013: Traffic
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"