Read by QxMD icon Read

polymer solar cell

Xunfan Liao, Feiyan Wu, Yongkang An, Qian Xie, Lie Chen, Yiwang Chen
Two novel copolymers based on benzothiadiazole (BT) or difluorobenzothiadizole (ffBT) with 2,2'-(perfluoro-1,4-phenylene)dithiophene (2TPF4), namely PBT-2TPF4 and PffBT-2TPF4, are synthesized for applications in polymer solar cells (PSCs). A noticeably high open-circuit voltage (Voc ) of 1.017 and 0.87 V are achieved for PffBT-2TPF4 and PBT-2TPF4-based devices, respectively. Although only a moderate efficiency (5.7%) of PBT-2TPF4-based devices is obtained, it is first demonstrated that 2TPF4 is a promising acceptor block for construction of the donor copolymers which possess high Voc , prominent crystallinity, and long-term stability, simultaneously...
December 8, 2016: Macromolecular Rapid Communications
Maryline Ralaiarisoa, Yan Busby, Johannes Frisch, Ingo Salzmann, Jean-Jacques Pireaux, Norbert Koch
Using 3D imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS) complemented by grazing-incidence X-ray diffraction (GIXRD), we spatially resolve changes in both the composition and structure of CH3NH3I3-xClx perovskite films on conducting polymer substrates at different annealing stages, in particular, before and after complete perovskite crystallization. The early stage of annealing is characterized by phase separation throughout the entire film into domains with perovskite and domains with a dominating chloride-rich phase...
December 8, 2016: Physical Chemistry Chemical Physics: PCCP
Qianqian Sun, Fujun Zhang, Qiaoshi An, Miao Zhang, Jian Wang, Jian Zhang
The dynamic drying process of the active layer should play a vitally important role in determining the performance of polymer solar cells (PSCs). Donor molecular packing and acceptor redistribution can be optimized by two successive post-treatments on the active layer. The blend films were freshly prepared by spin-coating method and then immediately transferred to a covered glass Petri dish to allow self-assembly of the donor molecules. The films were then treated with methanol or PFN-methanol solution to adjust the acceptor redistribution...
December 5, 2016: Physical Chemistry Chemical Physics: PCCP
Luca La Notte, Enrica Villari, Alessandro Lorenzo Palma, Alberto Sacchetti, Maria Michela Giangregorio, Giovanni Bruno, Aldo Di Carlo, Giuseppe Valerio Bianco, Andrea Reale
A five-layer (5L) graphene on a glass substrate has been demonstrated as a transparent conductive electrode to replace indium tin oxide (ITO) in organic photovoltaic devices. The required low sheet resistance, while maintaining high transparency, and the need of a wettable surface are the main issues. To overcome these, two strategies have been applied: (i) the p-doping of the multilayer graphene, thus reaching 25 Ω □(-1) or (ii) the O2-plasma oxidation of the last layer of the 5L graphene that results in a contact angle of 58° and a sheet resistance of 134 Ω □(-1)...
December 1, 2016: Nanoscale
Haijun Bin, Liang Gao, Zhi-Guo Zhang, Yankang Yang, Yindong Zhang, Chunfeng Zhang, Shanshan Chen, Lingwei Xue, Changduk Yang, Min Xiao, Yongfang Li
Simutaneously high open circuit voltage and high short circuit current density is a big challenge for achieving high efficiency polymer solar cells due to the excitonic nature of organic semdonductors. Herein, we developed a trialkylsilyl substituted 2D-conjugated polymer with the highest occupied molecular orbital level down-shifted by Si-C bond interaction. The polymer solar cells obtained by pairing this polymer with a non-fullerene acceptor demonstrated a high power conversion efficiency of 11.41% with both high open circuit voltage of 0...
December 1, 2016: Nature Communications
Olof Bäcke, Camilla Lindqvist, Amaia Diaz de Zerio Mendaza, Stefan Gustafsson, Ergang Wang, Mats R Andersson, Christian Müller, Per Magnus Kristiansen, Eva Olsson
We show by in situ microscopy that the effects of electron beam irradiation during transmission electron microscopy can be used to lock microstructural features and enhance the structural thermal stability of a nanostructured polymer:fullerene blend. Polymer:fullerene bulk-heterojunction thin films show great promise for use as active layers in organic solar cells but their low thermal stability is a hindrance. Lack of thermal stability complicates manufacturing and influences the lifetime of devices. To investigate how electron irradiation affects the thermal stability of polymer:fullerene films, a model bulk-heterojunction film based on a thiophene-quinoxaline copolymer and a fullerene derivative was heat-treated in-situ in a transmission electron microscope...
November 21, 2016: Ultramicroscopy
Chunyu Liu, Zhiqi Li, Zhihui Zhang, Xinyuan Zhang, Liang Shen, Wenbin Guo, Liu Zhang, Yongbing Long, Shengping Ruan
Tetrafluoro-tetracyanoquinodimethane (F4-TCNQ), a strong molecular acceptor, has been proved to be an excellent candidate to achieve the p-type doping effect. When F4-TCNQ is incorporated into a poly(3-hexylthiophene) (P3HT): indene-C60 bisadduct (ICBA) active layer, superior behavior upon inducing polymer donor excited electron transport is demonstrated due to the addition of a deep-lying lowest unoccupied molecular orbital (LUMO) from F4-TCNQ, leading to the realization of organic solar cells (OSCs) with an improved power conversion efficiency (PCE) of 5...
November 30, 2016: Physical Chemistry Chemical Physics: PCCP
Masoud Ghasemi, Long Ye, Qianqian Zhang, Liang Yan, Joo-Hyun Kim, Omar Awartani, Wei You, Abay Gadisa, Harald Ade
A sequential-casting ternary method is developed to create stratified bulk heterojunction (BHJ) solar cells, in which the two BHJ layers are spin cast sequentially without the need of adopting a middle electrode and orthogonal solvents. This method is found to be particularly useful for polymers that form a mechanically alloyed morphology due to the high degree of miscibility in the blend.
November 29, 2016: Advanced Materials
Cindy G Tang, Mervin C Y Ang, Kim-Kian Choo, Venu Keerthi, Jun-Kai Tan, Mazlan Nur Syafiqah, Thomas Kugler, Jeremy H Burroughes, Rui-Qi Png, Lay-Lay Chua, Peter K H Ho
To make high-performance semiconductor devices, a good ohmic contact between the electrode and the semiconductor layer is required to inject the maximum current density across the contact. Achieving ohmic contacts requires electrodes with high and low work functions to inject holes and electrons respectively, where the work function is the minimum energy required to remove an electron from the Fermi level of the electrode to the vacuum level. However, it is challenging to produce electrically conducting films with sufficiently high or low work functions, especially for solution-processed semiconductor devices...
November 23, 2016: Nature
Varun Vohra, Takuya Anzai, Shusei Inaba, William Porzio, Luisa Barba
Polymer solar cells (PSCs) are greatly influenced by both the vertical concentration gradient in the active layer and the quality of the various interfaces. To achieve vertical concentration gradients in inverted PSCs, a sequential deposition approach is necessary. However, a direct approach to sequential deposition by spin-coating results in partial dissolution of the underlying layers which decreases the control over the process and results in not well-defined interfaces. Here, we demonstrate that by using a transfer-printing process based on polydimethylsiloxane (PDMS) stamps we can obtain increased control over the thickness of the various layers while at the same time increasing the quality of the interfaces and the overall concentration gradient within the active layer of PSCs prepared in air...
2016: Science and Technology of Advanced Materials
Derya Baran, Raja Shahid Ashraf, David A Hanifi, Maged Abdelsamie, Nicola Gasparini, Jason A Röhr, Sarah Holliday, Andrew Wadsworth, Sarah Lockett, Marios Neophytou, Christopher J M Emmott, Jenny Nelson, Christoph J Brabec, Aram Amassian, Alberto Salleo, Thomas Kirchartz, James R Durrant, Iain McCulloch
Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7...
November 21, 2016: Nature Materials
Yuze Lin, Fuwen Zhao, Yang Wu, Kai Chen, Yuxin Xia, Guangwu Li, Shyamal K K Prasad, Jingshuai Zhu, Lijun Huo, Haijun Bin, Zhi-Guo Zhang, Xia Guo, Maojie Zhang, Yanming Sun, Feng Gao, Zhixiang Wei, Wei Ma, Chunru Wang, Justin Hodgkiss, Zhishan Bo, Olle Inganäs, Yongfang Li, Xiaowei Zhan
Five polymer donors with distinct chemical structures and different electronic properties are surveyed in a planar and narrow-bandgap fused-ring electron acceptor (IDIC)-based organic solar cells, which exhibit power conversion efficiencies of up to 11%.
November 10, 2016: Advanced Materials
Pierre Boufflet, Sebastian Wood, Jessica Wade, Zhuping Fei, Ji-Seon Kim, Martin Heeney
The microstructure of the active blend layer has been shown to be a critically important factor in the performance of organic solar devices. Block copolymers provide a potentially interesting avenue for controlling this active layer microstructure in solar cell blends. Here we explore the impact of backbone fluorination in block copolymers of poly(3-octyl-4-fluorothiophene)s and poly(3-octylthiophene) (F-P3OT-b-P3OT). Two block co-polymers with varying block lengths were prepared via sequential monomer addition under Kumada catalyst transfer polymerisation (KCTP) conditions...
2016: Beilstein Journal of Organic Chemistry
Almis Serbenta, Oleg V Kozlov, Giuseppe Portale, Paul H M van Loosdrecht, Maxim S Pshenichnikov
Morphology of organic photovoltaic bulk heterojunctions (BHJs) - a nanoscale texture of the donor and acceptor phases - is one of the key factors influencing efficiency of organic solar cells. Detailed knowledge of the morphology is hampered by the fact that it is notoriously difficult to investigate by microscopic methods. Here we all-optically track the exciton harvesting dynamics in the fullerene acceptor phase from which subdivision of the fullerene domain sizes into the mixed phase (2-15 nm) and large (>50 nm) domains is readily obtained via the Monte-Carlo simulations...
November 8, 2016: Scientific Reports
Wenchao Zhao, Sunsun Li, Shaoqing Zhang, Xiaoyu Liu, Jianhui Hou
Ternary polymer solar cells are fabricated based on one donor PBDB-T and two acceptors (a methyl-modified small-molecular acceptor (IT-M) and a bis-adduct of Bis[70]PCBM). A high power conversion efficiency of 12.2% can be achieved. The photovoltaic performance of the ternary polymer solar cells is not sensitive to the composition of the blend.
November 3, 2016: Advanced Materials
Zhigang Yin, Jiajun Wei, Qingdong Zheng
Organic solar cells (OSCs) have shown great promise as low-cost photovoltaic devices for solar energy conversion over the past decade. Interfacial engineering provides a powerful strategy to enhance efficiency and stability of OSCs. With the rapid advances of interface layer materials and active layer materials, power conversion efficiencies (PCEs) of both single-junction and tandem OSCs have exceeded a landmark value of 10%. This review summarizes the latest advances in interfacial layers for single-junction and tandem OSCs...
August 2016: Advanced Science (Weinheim, Baden-Wurttemberg, Germany)
Won-Yong Jin, Riski Titian Ginting, Keum-Jin Ko, Jae-Wook Kang
A novel approach for the fabrication of ultra-smooth and highly bendable substrates consisting of metal grid-conducting polymers that are fully embedded into transparent substrates (ME-TCEs) was successfully demonstrated. The fully printed ME-TCEs exhibited ultra-smooth surfaces (surface roughness ~1.0 nm), were highly transparent (~90% transmittance at a wavelength of 550 nm), highly conductive (sheet resistance ~4 Ω ◻(-1)), and relatively stable under ambient air (retaining ~96% initial resistance up to 30 days)...
November 3, 2016: Scientific Reports
Jieyang Jia, Linsey C Seitz, Jesse D Benck, Yijie Huo, Yusi Chen, Jia Wei Desmond Ng, Taner Bilir, James S Harris, Thomas F Jaramillo
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input...
October 31, 2016: Nature Communications
Hua Dong, Zhaoxin Wu, Yaqiu Jiang, Weihua Liu, Xin Li, Bo Jiao, Waseem Abbas, Xun Hou
In this article, a typical ultra-thin and super-flexible hybrid electrode was developed by integrating the encapsulation of silver nanowires (AgNWs) network between a monolayer graphene and polymer film as a sandwich structure. Compared with the reported flexible electrodes based on PET or PEN substrate, this unique electrode exhibits the superior optoelectronic characteristics (sheet resistance of 8.06 Ω/□ at 88.3% light transmittance ). Meanwhile, the specific up-to-bottom fabrication process could achieve the super-flat surface (RMS=2...
October 28, 2016: ACS Applied Materials & Interfaces
Dominik Würsch, Felix J Hofmann, Theresa Eder, A Vikas Aggarwal, Alissa Idelson, Sigurd Höger, John M Lupton, Jan Vogelsang
The microscopic orientation and position of photoactive molecules is crucial to the operation of optoelectronic devices such as OLEDs and solar cells. Here, we introduce a shape-persistent macrocyclic molecule as an excellent fluorescent probe to simply measure (i) its orientation by rotating the excitation polarization and recording the strength of modulation in photoluminescence (PL) and (ii) its position in a film by analyzing the overall PL brightness at the molecular level. The unique shape, the absorption and the fluorescence properties of this probe yield information on molecular orientation and position...
October 27, 2016: Journal of Physical Chemistry Letters
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"