Read by QxMD icon Read

Semiparametric efficient

Huazhen Lin, Zhe Fei, Yi Li
The timing of a time-dependent treatment-e.g., when to perform a kidney transplantation-is an important factor for evaluating treatment efficacy. A naïve comparison between the treated and untreated groups, while ignoring the timing of treatment, typically yields biased results that might favor the treated group because only patients who survive long enough will get treated. On the other hand, studying the effect of a time-dependent treatment is often complex, as it involves modeling treatment history and accounting for the possible time-varying nature of the treatment effect...
September 2016: Scandinavian Journal of Statistics, Theory and Applications
Seok-Oh Jeong, Chongwon Pae, Hae-Jeong Park
Recent understanding that the brain at rest does not remain in a single state but transiently visits multiple states emphasizes the importance of state changes embedded in the brain network. Due to the effectiveness of larger networks in characterizing brain states, there is an increasing need for a network-based change point detection method that is applicable to large-size networks, particularly those with longer time series. This paper presents a fast and efficient method for detecting change points in the large-size functional networks of resting-state fMRI...
December 2016: NeuroImage
Ruosha Li, Yu Cheng, Qingxia Chen, Jason Fine
Bivariate survival data arise frequently in familial association studies of chronic disease onset, as well as in clinical trials and observational studies with multiple time to event endpoints. The association between two event times is often scientifically important. In this article, we examine the association via a novel quantile association measure, which describes the dynamic association as a function of the quantile levels. The quantile association measure is free of marginal distributions, allowing direct evaluation of the underlying association pattern at different locations of the event times...
September 9, 2016: Biometrics
John D Rice, Alex Tsodikov
In cancer research, interest frequently centers on factors influencing a latent event that must precede a terminal event. In practice it is often impossible to observe the latent event precisely, making inference about this process difficult. To address this problem, we propose a joint model for the unobserved time to the latent and terminal events, with the two events linked by the baseline hazard. Covariates enter the model parametrically as linear combinations that multiply, respectively, the hazard for the latent event and the hazard for the terminal event conditional on the latent one...
August 24, 2016: Biometrics
Yuxue Jin, Tze Leung Lai
An approximate likelihood approach is developed for regression analysis of censored competing-risks data. This approach models directly the cumulative incidence function, instead of the cause-specific hazard function, in terms of explanatory covariates under a proportional subdistribution hazards assumption. It uses a self-consistent iterative procedure to maximize an approximate semiparametric likelihood function, leading to an asymptotically normal and efficient estimator of the vector of regression parameters...
August 8, 2016: Lifetime Data Analysis
Huaihou Chen, Bingxin Zhao, Guanqun Cao, Eric C Proges, Andrew O'Shea, Adam J Woods, Ronald A Cohen
Neuroimaging studies of cognitive and brain aging often yield massive datasets that create many analytic and statistical challenges. In this paper, we discuss and address several limitations in the existing work. (1) Linear models are often used to model the age effects on neuroimaging markers, which may be inadequate in capturing the potential nonlinear age effects. (2) Marginal correlations are often used in brain network analysis, which are not efficient in characterizing a complex brain network. (3) Due to the challenge of high-dimensionality, only a small subset of the regional neuroimaging markers is considered in a prediction model, which could miss important regional markers...
2016: Frontiers in Aging Neuroscience
Yuhang Xu, Yehua Li, Xiao Song
We propose a new class of semiparametric estimators for proportional hazards models in the presence of measurement error in the covariates, where the baseline hazard function, the hazard function for the censoring time, and the distribution of the true covariates are considered as unknown infinite dimensional parameters. We estimate the model components by solving estimating equations based on the semiparametric efficient scores under a sequence of restricted models where the logarithm of the hazard functions are approximated by reduced rank regression splines...
June 2016: Scandinavian Journal of Statistics, Theory and Applications
Kaili Ren, Christopher A Drummond, Pamela S Brewster, Steven T Haller, Jiang Tian, Christopher J Cooper, Biao Zhang
Missing responses are common problems in medical, social, and economic studies. When responses are missing at random, a complete case data analysis may result in biases. A popular debias method is inverse probability weighting proposed by Horvitz and Thompson. To improve efficiency, Robins et al. proposed an augmented inverse probability weighting method. The augmented inverse probability weighting estimator has a double-robustness property and achieves the semiparametric efficiency lower bound when the regression model and propensity score model are both correctly specified...
November 30, 2016: Statistics in Medicine
Yongxiu Cao, Jian Huang, Yanyan Liu, Xingqiu Zhao
This article considers sieve estimation in the Cox model with an unknown regression structure based on right-censored data. We propose a semiparametric pursuit method to simultaneously identify and estimate linear and nonparametric covariate effects based on B-spline expansions through a penalized group selection method with concave penalties. We show that the estimators of the linear effects and the nonparametric component are consistent. Furthermore, we establish the asymptotic normality of the estimator of the linear effects...
July 6, 2016: Biometrics
Xiaoyu Wang, James Y Dai
: In randomized clinical trials, identifying baseline genetic or genomic markers for predicting subgroup treatment effects is of rising interest. Outcome-dependent sampling is often employed for measuring markers. The R package TwoPhaseInd implements a number of efficient statistical methods we developed for estimating subgroup treatment effects and gene-treatment interactions, exploiting the gene-treatment independence dictated by randomization, including the case-only estimator, the maximum estimated likelihood estimator and the semiparametric maximum likelihood estimator for parameters in a logistic model...
November 1, 2016: Bioinformatics
Hong Zhu, Jing Ning, Yu Shen, Jing Qin
In this article, we consider methods for assessing covariate effects on survival outcome in the target population when data are collected under prevalent sampling. We investigate a flexible semiparametric density ratio model without the constraints of the constant disease incidence rate and discrete covariates as required in Shen and others 2012. For inference, we introduce two likelihood approaches with distinct computational algorithms. We first develop a full likelihood approach to obtain the most efficient estimators by an iterative algorithm...
June 26, 2016: Biostatistics
Kwun Chuen Gary Chan, Sheung Chi Phillip Yam, Zheng Zhang
The estimation of average treatment effects based on observational data is extremely important in practice and has been studied by generations of statisticians under different frameworks. Existing globally efficient estimators require non-parametric estimation of a propensity score function, an outcome regression function or both, but their performance can be poor in practical sample sizes. Without explicitly estimating either functions, we consider a wide class calibration weights constructed to attain an exact three-way balance of the moments of observed covariates among the treated, the control, and the combined group...
June 2016: Journal of the Royal Statistical Society. Series B, Statistical Methodology
Jason Roy, Kirsten J Lum, Michael J Daniels
Marginal structural models (MSMs) are a general class of causal models for specifying the average effect of treatment on an outcome. These models can accommodate discrete or continuous treatments, as well as treatment effect heterogeneity (causal effect modification). The literature on estimation of MSM parameters has been dominated by semiparametric estimation methods, such as inverse probability of treatment weighted (IPTW). Likelihood-based methods have received little development, probably in part due to the need to integrate out confounders from the likelihood and due to reluctance to make parametric modeling assumptions...
June 26, 2016: Biostatistics
Donglin Zeng, Lu Mao, D Y Lin
Interval censoring arises frequently in clinical, epidemiological, financial and sociological studies, where the event or failure of interest is known only to occur within an interval induced by periodic monitoring. We formulate the effects of potentially time-dependent covariates on the interval-censored failure time through a broad class of semiparametric transformation models that encompasses proportional hazards and proportional odds models. We consider nonparametric maximum likelihood estimation for this class of models with an arbitrary number of monitoring times for each subject...
June 2016: Biometrika
Alexander R Luedtke, Mark J van der Laan
An individualized treatment rule (ITR) is a treatment rule which assigns treatments to individuals based on (a subset of) their measured covariates. An optimal ITR is the ITR which maximizes the population mean outcome. Previous works in this area have assumed that treatment is an unlimited resource so that the entire population can be treated if this strategy maximizes the population mean outcome. We consider optimal ITRs in settings where the treatment resource is limited so that there is a maximum proportion of the population which can be treated...
May 1, 2016: International Journal of Biostatistics
Wenjing Zheng, Maya Petersen, Mark J van der Laan
In social and health sciences, many research questions involve understanding the causal effect of a longitudinal treatment on mortality (or time-to-event outcomes in general). Often, treatment status may change in response to past covariates that are risk factors for mortality, and in turn, treatment status may also affect such subsequent covariates. In these situations, Marginal Structural Models (MSMs), introduced by Robins (1997. Marginal structural models Proceedings of the American Statistical Association...
May 1, 2016: International Journal of Biostatistics
Yebin Tao, Lu Wang
Dynamic treatment regimes (DTRs) are sequential decision rules that focus simultaneously on treatment individualization and adaptation over time. To directly identify the optimal DTR in a multi-stage multi-treatment setting, we propose a dynamic statistical learning method, adaptive contrast weighted learning. We develop semiparametric regression-based contrasts with the adaptation of treatment effect ordering for each patient at each stage, and the adaptive contrasts simplify the problem of optimization with multiple treatment comparisons to a weighted classification problem that can be solved by existing machine learning techniques...
May 23, 2016: Biometrics
Jon Arni Steingrimsson, Liqun Diao, Annette M Molinaro, Robert L Strawderman
Estimating a patient's mortality risk is important in making treatment decisions. Survival trees are a useful tool and employ recursive partitioning to separate patients into different risk groups. Existing 'loss based' recursive partitioning procedures that would be used in the absence of censoring have previously been extended to the setting of right censored outcomes using inverse probability censoring weighted estimators of loss functions. In this paper, we propose new 'doubly robust' extensions of these loss estimators motivated by semiparametric efficiency theory for missing data that better utilize available data...
September 10, 2016: Statistics in Medicine
Yanqing Sun, Xiyuan Qian, Qiong Shou, Peter B Gilbert
Under the case-cohort design introduced by Prentice (Biometrica 73:1-11, 1986), the covariate histories are ascertained only for the subjects who experience the event of interest (i.e., the cases) during the follow-up period and for a relatively small random sample from the original cohort (i.e., the subcohort). The case-cohort design has been widely used in clinical and epidemiological studies to assess the effects of covariates on failure times. Most statistical methods developed for the case-cohort design use the proportional hazards model, and few methods allow for time-varying regression coefficients...
March 19, 2016: Lifetime Data Analysis
Yih-Huei Huang, Wen-Han Hwang, Fei-Yin Chen
Longitudinal covariates in survival models are generally analyzed using random effects models. By framing the estimation of these survival models as a functional measurement error problem, semiparametric approaches such as the conditional score or the corrected score can be applied to find consistent estimators for survival model parameters without distributional assumptions on the random effects. However, in order to satisfy the standard assumptions of a survival model, the semiparametric methods in the literature only use covariate data before each event time...
March 8, 2016: Biometrics
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"