Read by QxMD icon Read


Noah T Ashley, Greg E Demas
Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions...
October 17, 2016: Hormones and Behavior
Megan A M Kutzer, Sophie A O Armitage
Mounting and maintaining an effective immune response in the face of infection can be costly. The outcome of infection depends on two host immune strategies: resistance and tolerance. Resistance limits pathogen load, while tolerance reduces the fitness impact of an infection. While resistance strategies are well studied, tolerance has received less attention, but is now considered to play a vital role in host-pathogen interactions in animals. A major challenge in ecoimmunology is to understand how some hosts maintain their fitness when infected while others succumb to infection, as well as how extrinsic, environmental factors, such as diet, affect defense...
July 2016: Ecology and Evolution
Patrick M Brock, Simon J Goodman, Ailsa J Hall, Marilyn Cruz, Karina Acevedo-Whitehouse
BACKGROUND: A multitude of correlations between heterozygosity and fitness proxies associated with disease have been reported from wild populations, but the genetic basis of these associations is unresolved. We used a longitudinal dataset on wild Galapagos sea lions (Zalophus wollebaeki) to develop a relatively new perspective on this problem, by testing for associations between heterozygosity and immune variation across age classes and between ecological contexts. RESULTS: Homozygosity by locus was negatively correlated with serum immunoglobulin G production in pups (0-3 months of age), suggesting that reduced genetic diversity has a detrimental influence on the early development of immune defence in the Galapagos sea lion...
2015: BMC Evolutionary Biology
Camila Vera-Massieu, Patrick M Brock, Carlos Godínez-Reyes, Karina Acevedo-Whitehouse
Variations in immune function can arise owing to trade-offs, that is, the allocation of limited resources among costly competing physiological functions. Nevertheless, there is little information regarding the ontogeny of the immune system within an ecological context, and it is still unknown whether development affects the way in which resources are allocated to different immune effectors. We investigated changes in the inflammatory response during early development of the California sea lion (Zalophus californianus) and examined its association with body condition, as a proxy for the availability of energetic resources...
April 2015: Royal Society Open Science
Bobby Habig, Elizabeth A Archie
In male vertebrates, two conflicting paradigms--the energetic costs of high dominance rank and the chronic stress of low rank--have been proposed to explain patterns of immune function and parasitism. To date, neither paradigm has provided a complete explanation for status-related differences in male health. Here, we applied meta-analyses to test for correlations between male social status, immune responses and parasitism. We used an ecoimmunological framework, which proposes that males should re-allocate investment in different immune components depending on the costs of dominance or subordination...
May 26, 2015: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
Robin W Warne, Glenn A Proudfoot, Erica J Crespi
Diverse biomarkers including stable isotope, hormonal, and ecoimmunological assays are powerful tools to assess animal condition. However, an integrative approach is necessary to provide the context essential to understanding how biomarkers reveal animal health in varied ecological conditions. A barrier to such integration is a general lack of awareness of how shared extraction methods from across fields can provide material from the same animal tissues for diverse biomarker assays. In addition, the use of shared methods for extracting differing tissue fractions can also provide biomarkers for how animal health varies across time...
February 2015: Ecology and Evolution
Yongming Sang, Frank Blecha
Ecological immunology (or ecoimmunology) is a new discipline in animal health and immunology that extends immunologists' views into a natural context where animals and humans have co-evolved. Antibiotic resistance and tolerance (ART) in bacteria are manifested in antibiosis-surviving subsets of resisters and persisters. ART has emerged though natural evolutionary consequences enriched by human nosocomial and agricultural practices, in particular, wide use of antibiotics that overwhelms other ecological and immunological interactions...
2014: Pathogens
Gregory E Demas, Elizabeth D Carlton
The study of immunity has become an important area of investigation for researchers in a wide range of areas outside the traditional discipline of immunology. For the last several decades, psychoneuroimmunology (PNI) has strived to identify key interactions among the nervous, endocrine and immune systems and behavior. More recently, the field of ecological immunology (ecoimmunology) has been established within the perspectives of ecology and evolutionary biology, sharing with PNI an appreciation of the environmental influences on immune function...
February 2015: Brain, Behavior, and Immunity
(no author information available yet)
No abstract text is available yet for this article.
September 2014: Integrative and Comparative Biology
Lynn B Martin, Raoul K Boughton, Daniel R Ardia
The Division of Ecoimmunology and Disease Ecology (hereafter, DEDE) was founded in January 2014, and its bylaws approved in May of that year, to encourage the growth of research addressing the mechanistic aspects of host-parasite interactions. The purpose of DEDE is to facilitate communication, research, and data-sharing among scientists and promote mentoring and training of students and early career investigators, excellence of research, and the fundamentals of societal business. Here, we review briefly the history of the field, and the history of the discipline with SICB...
September 2014: Integrative and Comparative Biology
James S Adelman, Sahnzi C Moyers, Dana M Hawley
Despite the ubiquity of parasites and pathogens, behavioral and physiological responses to infection vary widely across individuals. Although such variation can have pronounced effects on population-level processes, including the transmission of infectious disease, the study of individual responses to infection in free-living animals remains a challenge. To fully understand the causes and consequences of heterogeneous responses to infection, research in ecoimmunology and disease-ecology must incorporate minimally invasive techniques to track individual animals in natural settings...
September 2014: Integrative and Comparative Biology
C J Downs, J S Adelman, G E Demas
Ecoimmunology utilizes techniques from traditionally laboratory-based disciplines--for example, immunology, genomics, proteomics, neuroendocrinology, and cell biology--to reveal how the immune systems of wild organisms both shape and respond to ecological and evolutionary pressures. Immunological phenotypes are embedded within a mechanistic pathway leading from genotype through physiology to shape higher-order biological phenomena. As such, "mechanisms" in ecoimmunology can refer to both the within-host processes that shape immunological phenotypes, or it can refer the ways in which different immunological phenotypes alter between-organism processes at ecological and evolutionary scales...
September 2014: Integrative and Comparative Biology
William E Zamer, Samuel M Scheiner
Implicit or subconscious theory is especially common in the biological sciences. Yet, theory plays a variety of roles in scientific inquiry. First and foremost, it determines what does and does not count as a valid or interesting question or line of inquiry. Second, theory determines the background assumptions within which inquiries are pursued. Third, theory provides linkages among disciplines. For these reasons, it is important and useful to develop explicit theories for biology. A general theory of organisms is developed, which includes 10 fundamental principles that apply to all organisms, and 6 that apply to multicellular organisms only...
November 2014: Integrative and Comparative Biology
C J Downs, N A Dochtermann
Considerable research in ecoimmunology focuses on investigating variation in immune responses and linking this variation to physiological trade-offs, ecological traits, and environmental conditions. Variation in immune responses exists within and among individuals, among populations, and among taxonomic groupings. Understanding how variation and covariation are distributed and how they differ across these levels is necessary for drawing appropriate ecological and evolutionary inferences. Moreover, variation at the among-individual level directly connects to underlying quantitative genetic parameters...
September 2014: Integrative and Comparative Biology
Patrick M Brock, Courtney C Murdock, Lynn B Martin
Ecoimmunology is an example of how fruitful integrative approaches to biology can be. Since its emergence, ecoimmunology has sparked constructive debate on a wide range of topics, from the molecular mechanics of immune responses to the role of immunity in shaping the evolution of life histories. To complement the symposium Methods and Mechanisms in Ecoimmunology and commemorate the inception of the Division of Ecoimmunology and Disease Ecology within the Society for Integrative and Comparative Biology, we appraise the origins of ecoimmunology, with a focus on its continuing and valuable integration with disease ecology...
September 2014: Integrative and Comparative Biology
Carol A Fassbinder-Orth
Historically, the use of cutting-edge molecular techniques to study immunological gene expression and related cellular pathways has been largely limited to model organisms. Few studies have been performed that quantify the molecular immunological responses of non-model species, especially in response to environmental factors, life-history events, or exposure to parasites. This dearth of information has largely occurred due to the lack of available non-model species-specific gene sequences and immunological reagents and also due to prohibitively expensive technology...
September 2014: Integrative and Comparative Biology
Franziska C Sandmeier, Richard C Tracy
We propose a new heuristic model that incorporates metabolic rate and pace of life to predict a vertebrate species' investment in adaptive immune function. Using reptiles as an example, we hypothesize that animals with low metabolic rates will invest more in innate immunity compared with adaptive immunity. High metabolic rates and body temperatures should logically optimize the efficacy of the adaptive immune system--through rapid replication of T and B cells, prolific production of induced antibodies, and kinetics of antibody--antigen interactions...
September 2014: Integrative and Comparative Biology
Otto Seppälä, Katja Leicht
Understanding the outcomes of host-parasite interactions in nature is in high demand as parasites and pathogens are important for several ecological and evolutionary processes. Ecological immunology (ecoimmunology) has a key role in reaching this goal because immune defence is the main physiological barrier against infections. To date, ecoimmunological studies largely lean on measuring constitutive immune defences (components of defence that are always active). However, understanding the role of inducible components of immune function is important as the immune system is largely an inducible defence...
August 1, 2013: Journal of Experimental Biology
E A Archie
Ecoimmunologists strive to understand how ecology and evolution shape immunity in natural populations. To date, ecoimmunologists have sometimes struggled to find measures of immunity that can be easily performed in nonmodel systems. One exception is variation in rates of cutaneous wound healing, which is a functionally important, integrative measure of immunity that combines cell-mediated, inflammatory and even some Th2-mediated processes. Here I review what is known about sources of variation in wound healing in wild populations, focusing on two key ecoimmunological questions: How and when does the stress response influence immune function? And how do energetic trade-offs alter immunity? The results indicate that stress and energetic costs can suppress wound healing, but the effects depend on individuals' social and abiotic environments...
November 2013: Parasite Immunology
Karla T Moeller, Michael W Butler, Dale F Denardo
INTRODUCTION: Immune function is a vital physiological process that is often suppressed during times of resource scarcity due to investments in other physiological systems. While energy is the typical currency that has been examined in such trade-offs, limitations of other resources may similarly lead to trade-offs that affect immune function. Specifically, water is a critical resource with profound implications for organismal ecology, yet its availability can fluctuate at local, regional, and even global levels...
2013: Frontiers in Zoology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"