keyword
MENU ▼
Read by QxMD icon Read
search

PRMT t cell differentiation

keyword
https://www.readbyqxmd.com/read/29026071/arginine-methylation-catalyzed-by-prmt1-is-required-for-b-cell-activation-and-differentiation
#1
Simona Infantino, Amanda Light, Kristy O'Donnell, Vanessa Bryant, Danielle T Avery, Michael Elliott, Stuart G Tangye, Gabrielle Belz, Fabienne Mackay, Stephane Richard, David Tarlinton
Arginine methylation catalyzed by protein arginine methyltransferases (PRMT) is a common post-translational modification in mammalian cells, regulating many important functions including cell signalling, proliferation and differentiation. Here we show the role of PRMT1 in B-cell activation and differentiation. PRMT1 expression and activity in human and mouse peripheral B cells increases in response to in vitro or in vivo activation. Deletion of the Prmt1 gene in mature B cells establishes that although the frequency and phenotype of peripheral B cell subsets seem unaffected, immune responses to T-cell-dependent and -independent antigens are substantially reduced...
October 12, 2017: Nature Communications
https://www.readbyqxmd.com/read/27601476/arginine-demethylation-of-g3bp1-promotes-stress-granule-assembly
#2
Wei-Chih Tsai, Sitaram Gayatri, Lucas C Reineke, Gianluca Sbardella, Mark T Bedford, Richard E Lloyd
Stress granules (SGs) are cytoplasmic condensates of stalled messenger ribonucleoprotein complexes (mRNPs) that form when eukaryotic cells encounter environmental stress. RNA-binding proteins are enriched for arginine methylation and facilitate SG assembly through interactions involving regions of low amino acid complexity. How methylation of specific RNA-binding proteins regulates RNA granule assembly has not been characterized. Here, we examined the potent SG-nucleating protein Ras-GAP SH3-binding protein 1 (G3BP1), and found that G3BP1 is differentially methylated on specific arginine residues by protein arginine methyltransferase (PRMT) 1 and PRMT5 in its RGG domain...
October 21, 2016: Journal of Biological Chemistry
https://www.readbyqxmd.com/read/23516374/functional-genomic-analysis-of-the-let-7-regulatory-network-in-caenorhabditis-elegans
#3
Shaun E Hunter, Emily F Finnegan, Dimitrios G Zisoulis, Michael T Lovci, Katya V Melnik-Martinez, Gene W Yeo, Amy E Pasquinelli
The let-7 microRNA (miRNA) regulates cellular differentiation across many animal species. Loss of let-7 activity causes abnormal development in Caenorhabditis elegans and unchecked cellular proliferation in human cells, which contributes to tumorigenesis. These defects are due to improper expression of protein-coding genes normally under let-7 regulation. While some direct targets of let-7 have been identified, the genome-wide effect of let-7 insufficiency in a developing animal has not been fully investigated...
2013: PLoS Genetics
1
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"