Read by QxMD icon Read


Kanishk Jain, Cyrus Y Jin, Steven G Clarke
Arginine methylation on histones is a central player in epigenetics and in gene activation and repression. Protein arginine methyltransferase (PRMT) activity has been implicated in stem cell pluripotency, cancer metastasis, and tumorigenesis. The expression of one of the nine mammalian PRMTs, PRMT5, affects the levels of symmetric dimethylarginine (SDMA) at Arg-3 on histone H4, leading to the repression of genes which are related to disease progression in lymphoma and leukemia. Another PRMT, PRMT7, also affects SDMA levels at the same site despite its unique monomethylating activity and the lack of any evidence for PRMT7-catalyzed histone H4 Arg-3 methylation...
September 19, 2017: Proceedings of the National Academy of Sciences of the United States of America
Yufei Yue, Yuzhuo Chu, Hong Guo
Protein arginine methyltransferases (PRMTs) catalyze the transfer of the methyl group from S-adenosyl-l-methionine (AdoMet) to arginine residues. There are three types of PRMTs (I, II and III) that produce different methylation products, including asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and monomethylarginine (MMA). Since these different methylations can lead to different biological consequences, understanding the origin of product specificity of PRMTs is of considerable interest...
May 29, 2015: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Andrea Hadjikyriacou, Yanzhong Yang, Alexsandra Espejo, Mark T Bedford, Steven G Clarke
Human protein arginine methyltransferase (PRMT) 9 symmetrically dimethylates arginine residues on splicing factor SF3B2 (SAP145) and has been functionally linked to the regulation of alternative splicing of pre-mRNA. Site-directed mutagenesis studies on this enzyme and its substrate had revealed essential unique residues in the double E loop and the importance of the C-terminal duplicated methyltransferase domain. In contrast to what had been observed with other PRMTs and their physiological substrates, a peptide containing the methylatable Arg-508 of SF3B2 was not recognized by PRMT9 in vitro...
July 3, 2015: Journal of Biological Chemistry
Tamara Ratovitski, Nicolas Arbez, Jacqueline C Stewart, Ekaterine Chighladze, Christopher A Ross
Abnormal protein interactions of mutant huntingtin (Htt) triggered by polyglutamine expansion are thought to mediate Huntington's disease (HD) pathogenesis. Here, we explored a functional interaction of Htt with protein arginine methyltransferase 5 (PRMT5), an enzyme mediating symmetrical dimethylation of arginine (sDMA) of key cellular proteins, including histones, and spliceosomal Sm proteins. Gene transcription and RNA splicing are impaired in HD. We demonstrated PRMT5 and Htt interaction and their co-localization in transfected neurons and in HD brain...
2015: Cell Cycle
Labib Rouhana, Ana P Vieira, Rachel H Roberts-Galbraith, Phillip A Newmark
Planarian flatworms contain a population of adult stem cells (neoblasts) that proliferate and generate cells of all tissues during growth, regeneration and tissue homeostasis. A characteristic feature of neoblasts is the presence of chromatoid bodies, large cytoplasmic ribonucleoprotein (RNP) granules morphologically similar to structures present in the germline of many organisms. This study aims to reveal the function, and identify additional components, of planarian chromatoid bodies. We uncover the presence of symmetrical dimethylarginine (sDMA) on chromatoid body components and identify the ortholog of protein arginine methyltransferase PRMT5 as the enzyme responsible for sDMA modification in these proteins...
March 2012: Development
Su-Jin Kim, Byong Chul Yoo, Chang-Sub Uhm, Sang-Won Lee
Protein arginine methylation is a major posttranslational modification that regulates various cellular functions, such as RNA processing and DNA repair. A recent report showed the involvement of protein arginine methyltransferase (PRMT) 4 in chromatin remodeling and gene expression during muscle differentiation in C2C12 cells. Because the fusion of myoblasts is a unique phenomenon observed in skeletal muscle differentiation, the present study focused on the expression and activities of PRMTs during myoblast fusion in primary rat skeletal muscle...
February 2011: Biochimica et Biophysica Acta
Chongtae Kim, Yongchul Lim, Byong Chul Yoo, Nam Hee Won, Sangduk Kim, Gieun Kim
BACKGROUND: Post-translational arginine methylation which modifies protein-arginyl residues by protein arginine methyltransferase (PRMT) was investigated during synchronized HeLa cell cycle. METHODS: The lysates of cells synchronized at each stage were subjected to one and/or two dimensional electrophoresis followed by Western immunoblot using against anti-asymmetric-dimethyl-arginine (ASYM24), anti-symmetric-dimethyl-arginine (SYM10), and subclasses of PRMTs, including PRMT1, PRMT3, PRMT4 (CARM1), PRMT5, PRMT6, and PRMT7 antibodies...
September 2010: Biochimica et Biophysica Acta
Mikiko C Siomi, Taro Mannen, Haruhiko Siomi
PIWI (P-element-induced wimpy testis) proteins are a subset of the Argonaute proteins and are expressed predominantly in the germlines of a variety of organisms, including Drosophila and mammals. PIWI proteins associate specifically with PIWI-interacting RNAs (piRNAs), small RNAs that are also expressed predominantly in germlines, and silence transposable DNA elements and other genes showing complementarities to the sequences of associated piRNAs. This mechanism helps to maintain the integrity of the genome and the development of gametes...
April 1, 2010: Genes & Development
W Chen, M Cao, Y Yang, Y Nagahama, H Zhao
DNA methylation is an important biochemical epigenetic determinant of gene expression in cells and therefore actively involved in gene regulation, chromosomal conformation, and protein activity. Protein arginine methyltransferases (PRMTs) play a major role in the methylation of proteins that have an arginine residue, catalyzing both the asymmetric dimethylation of arginine (aDMA) and symmetric dimethylation of arginine (sDMA). PRMT5, a type II PRMT which catalyzes sDMA, has been shown to have a pivotal role in pole plasm assembly and germ cell development in Drosophila and also to be an associate factor of Blimp1 for germ cell development in mouse...
August 2009: Fish Physiology and Biochemistry
Graydon B Gonsalvez, Kavita Praveen, Amanda J Hicks, Liping Tian, A Gregory Matera
Sm proteins form stable ribonucleoprotein (RNP) complexes with small nuclear (sn)RNAs and are core components of the eukaryotic spliceosome. In vivo, the assembly of Sm proteins onto snRNAs requires the survival motor neurons (SMN) complex. Several reports have shown that SMN protein binds with high affinity to symmetric dimethylarginine (sDMA) residues present on the C-terminal tails of SmB, SmD1, and SmD3. This post-translational modification is thought to play a crucial role in snRNP assembly. In human cells, two distinct protein arginine methyltransferases (PRMT5 and PRMT7) are required for snRNP biogenesis...
May 2008: RNA
Yun Teng, Allicia C Girvan, Lavona K Casson, William M Pierce, Mingwei Qian, Shelia D Thomas, Paula J Bates
AS1411 is a quadruplex-forming oligonucleotide aptamer that targets nucleolin. It is currently in clinical trials as a treatment for various cancers. We have proposed that AS1411 inhibits cancer cell proliferation by affecting the activities of certain nucleolin-containing complexes. Here, we report that protein arginine methyltransferase 5 (PRMT5), an enzyme that catalyzes the formation of symmetrical dimethylarginine (sDMA), is a nucleolin-associated protein whose localization and activity are altered by AS1411...
November 1, 2007: Cancer Research
Graydon B Gonsalvez, Liping Tian, Jason K Ospina, François-Michel Boisvert, Angus I Lamond, A Gregory Matera
Small nuclear ribonucleoproteins (snRNPs) are core components of the spliceosome. The U1, U2, U4, and U5 snRNPs each contain a common set of seven Sm proteins. Three of these Sm proteins are posttranslationally modified to contain symmetric dimethylarginine (sDMA) residues within their C-terminal tails. However, the precise function of this modification in the snRNP biogenesis pathway is unclear. Several lines of evidence suggest that the methyltransferase protein arginine methyltransferase 5 (PRMT5) is responsible for sDMA modification of Sm proteins...
August 27, 2007: Journal of Cell Biology
Graydon B Gonsalvez, T K Rajendra, Liping Tian, A Gregory Matera
BACKGROUND: The C-terminal tails of spliceosomal Sm proteins contain symmetrical dimethylarginine (sDMA) residues in vivo. The precise function of this posttranslational modification in the biogenesis of small nuclear ribonucleoproteins (snRNPs) and pre-mRNA splicing remains largely uncharacterized. Here, we examine the organismal and cellular consequences of loss of symmetric dimethylation of Sm proteins in Drosophila. RESULTS: Genetic disruption of dart5, the fly ortholog of human PRMT5, results in the complete loss of sDMA residues on spliceosomal Sm proteins...
June 6, 2006: Current Biology: CB
Teldja N Azzouz, Ramesh S Pillai, Christoph Däpp, Ashwin Chari, Gunter Meister, Christian Kambach, Utz Fischer, Daniel Schümperli
The survival of motor neurons (SMN) complex mediates the assembly of small nuclear ribonucleoproteins (snRNPs) involved in splicing and histone RNA processing. A crucial step in this process is the binding of Sm proteins onto the SMN protein. For Sm B/B', D1, and D3, efficient binding to SMN depends on symmetrical dimethyl arginine (sDMA) modifications of their RG-rich tails. This methylation is achieved by another entity, the PRMT5 complex. Its pICln subunit binds Sm proteins whereas the PRMT5 subunit catalyzes the methylation reaction...
October 14, 2005: Journal of Biological Chemistry
Stéphane Richard, Mélanie Morel, Patrick Cléroux
Arginine methylation is a post-translational modification resulting in the generation of aDMAs (asymmetrical omega-NG, NG-dimethylated arginines) and sDMAs (symmetrical omega-NG, N'G-dimethylated arginines). The role of arginine methylation in cell signalling and gene expression in T lymphocytes is not understood. In the present study, we report a role for protein arginine methylation in regulating IL-2 (interleukin 2) gene expression in T lymphocytes. Leukaemic Jurkat T-cells treated with a known methylase inhibitor, 5'-methylthioadenosine, had decreased cytokine gene expression, as measured using an NF-AT (nuclear factor of activated T-cells)-responsive promoter linked to the luciferase reporter gene...
May 15, 2005: Biochemical Journal
Jin-Hyung Lee, Jeffry R Cook, Zhi-Hong Yang, Olga Mirochnitchenko, Samuel I Gunderson, Arthur M Felix, Nicole Herth, Ralf Hoffmann, Sidney Pestka
The cDNA for PRMT7, a recently discovered human protein-arginine methyltransferase (PRMT), was cloned and expressed in Escherichia coli and mammalian cells. Immunopurified PRMT7 actively methylated histones, myelin basic protein, a fragment of human fibrillarin (GAR) and spliceosomal protein SmB. Amino acid analysis showed that the modifications produced were predominantly monomethylarginine and symmetric dimethylarginine (SDMA). Examination of PRMT7 expressed in E. coli demonstrated that peptides corresponding to sequences contained in histone H4, myelin basic protein, and SmD3 were methylated...
February 4, 2005: Journal of Biological Chemistry
François-Michel Boisvert, Jocelyn Côté, Marie-Chloé Boulanger, Stéphane Richard
Arginine methylation is a post-translational modification that results in the formation of asymmetrical and symmetrical dimethylated arginines (a- and sDMA). This modification is catalyzed by type I and II protein-arginine methyltransferases (PRMT), respectively. The two major enzymes PRMT1 (type I) and PRMT5 (type II) preferentially methylate arginines located in RG-rich clusters. Arginine methylation is a common modification, but the reagents for detecting this modification have been lacking. Thus, fewer than 20 proteins have been identified in the last 40 years as containing dimethylated arginines...
December 2003: Molecular & Cellular Proteomics: MCP
G Meister, C Eggert, D Bühler, H Brahms, C Kambach, U Fischer
Seven Sm proteins, termed B/B', D1, D2, D3, E, F, and G, assemble in an ordered manner onto U snRNAs to form the Sm core of the spliceosomal snRNPs U1, U2, U4/U6, and U5. The survival of motor neuron (SMN) protein binds to Sm proteins and mediates in the context of a macromolecular (SMN-) complex the assembly of the Sm core. Binding of SMN to Sm proteins is enhanced by modification of specific arginine residues in the Sm proteins D1 and D3 to symmetrical dimethylarginines (sDMAs), suggesting that assembly might be regulated at the posttranslational level...
December 11, 2001: Current Biology: CB
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"