keyword
MENU ▼
Read by QxMD icon Read
search

3D bioprint

keyword
https://www.readbyqxmd.com/read/28227435/gelatin-methacrylamide-hydrogel-with-graphene-nanoplatelets-for-neural-cell-laden-3d-bioprinting
#1
Wei Zhu, Brent T Harris, Lijie Grace Zhang, Wei Zhu, Brent T Harris, Lijie Grace Zhang, Wei Zhu, Brent T Harris, Lijie Grace Zhang
Nervous system is extremely complex which leads to rare regrowth of nerves once injury or disease occurs. Advanced 3D bioprinting strategy, which could simultaneously deposit biocompatible materials, cells and supporting components in a layer-by-layer manner, may be a promising solution to address neural damages. Here we presented a printable nano-bioink composed of gelatin methacrylamide (GelMA), neural stem cells, and bioactive graphene nanoplatelets to target nerve tissue regeneration in the assist of stereolithography based 3D bioprinting technique...
August 2016: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
https://www.readbyqxmd.com/read/28223179/biological-aspects-of-axonal-damage-in-glaucoma-a-brief-review
#2
REVIEW
Ernst R Tamm, C Ross Ethier, Claude Burgoyne, C Ross Ethier, Ernst R Tamm, Cheri Stowell, John E Dowling, Crawford Downs, Mark H Ellisman, Steven Fisher, Brad Fortune, Marcus Fruttiger, Tatjana Jakobs, Geoffrey Lewis, Claire H Mitchell, John Morrison, Sansar C Sharma, Ian Sigal, Michael Sofroniew, Lin Wang, Janey Wiggs, Samuel Wu, Richard H Masland
Intraocular pressure (IOP) is a critical risk factor in glaucoma, and the available evidence derived from experimental studies in primates and rodents strongly indicates that the site of IOP-induced axonal damage in glaucoma is at the optic nerve head (ONH). However, the mechanisms that cause IOP-induced damage at the ONH are far from understood. A possible sequence of events could originate with IOP-induced stress in the ONH connective tissue elements (peripapillary sclera, scleral canal and lamina cribrosa) that leads to an increase in biomechanical strain...
February 18, 2017: Experimental Eye Research
https://www.readbyqxmd.com/read/28192772/direct-3d-bioprinting-of-prevascularized-tissue-constructs-with-complex-microarchitecture
#3
Wei Zhu, Xin Qu, Jie Zhu, Xuanyi Ma, Sherrina Patel, Justin Liu, Pengrui Wang, Cheuk Sun Edwin Lai, Maling Gou, Yang Xu, Kang Zhang, Shaochen Chen
Living tissues rely heavily on vascular networks to transport nutrients, oxygen and metabolic waste. However, there still remains a need for a simple and efficient approach to engineer vascularized tissues. Here, we created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid bioprinting method - microscale continuous optical bioprinting (μCOB). Multiple cell types mimicking the native vascular cell composition were encapsulated directly into hydrogels with precisely controlled distribution without the need of sacrificial materials or perfusion...
February 2, 2017: Biomaterials
https://www.readbyqxmd.com/read/28187519/development-of-a-novel-alginate-polyvinyl-alcohol-hydroxyapatite-hydrogel-for-3d-bioprinting-bone-tissue-engineered-scaffolds
#4
Stephanie T Bendtsen, Sean P Quinnell, Mei Wei
3D printed biomaterials used as personalized tissue substitutes have the ability to promote and enhance regeneration in areas of defected tissue. The challenge with 3D printing for bone tissue engineering remains the selection of a material with optimal rheological properties for printing in addition to biocompatibility and capacity for uniform cell incorporation. Hydrogel biomaterials may provide sufficient printability to allow cell encapsulation and bioprinting of scaffolds with uniform cell distribution...
February 10, 2017: Journal of Biomedical Materials Research. Part A
https://www.readbyqxmd.com/read/28185142/print-me-an-organ-ethical-and-regulatory-issues-emerging-from-3d-bioprinting-in-medicine
#5
Frederic Gilbert, Cathal D O'Connell, Tajanka Mladenovska, Susan Dodds
Recent developments of three-dimensional printing of biomaterials (3D bioprinting) in medicine have been portrayed as demonstrating the potential to transform some medical treatments, including providing new responses to organ damage or organ failure. However, beyond the hype and before 3D bioprinted organs are ready to be transplanted into humans, several important ethical concerns and regulatory questions need to be addressed. This article starts by raising general ethical concerns associated with the use of bioprinting in medicine, then it focuses on more particular ethical issues related to experimental testing on humans, and the lack of current international regulatory directives to guide these experiments...
February 9, 2017: Science and Engineering Ethics
https://www.readbyqxmd.com/read/28140346/increased-lipid-accumulation-and-adipogenic-gene-expression-of-adipocytes-in-3d-bioprinted-nanocellulose-scaffolds
#6
I Henriksson, P Gatenholm, D A Hägg
Compared to standard 2D culture systems, new methods for 3D cell culture of adipocytes could provide more physiologically accurate data and a deeper understanding of metabolic diseases such as diabetes. By resuspending living cells in a bioink of nanocellulose and hyaluronic acid, we were able to print 3D scaffolds with uniform cell distribution. After one week in culture, cell viability was 95%, and after two weeks the cells displayed a more mature phenotype with larger lipid droplets than standard 2D cultured cells...
February 21, 2017: Biofabrication
https://www.readbyqxmd.com/read/28128224/pyrintegrin-induces-soft-tissue-formation-by-transplanted-or-endogenous-cells
#7
Bhranti S Shah, Mo Chen, Takahiro Suzuki, Mildred Embree, Kimi Kong, Chang H Lee, Ling He, Lusai Xiang, Jeffrey A Ahn, Sheng Ding, Jeremy J Mao
Focal adipose deficiency, such as lipoatrophy, lumpectomy or facial trauma, is a formidable challenge in reconstructive medicine, and yet scarcely investigated in experimental studies. Here, we report that Pyrintegrin (Ptn), a 2,4-disubstituted pyrimidine known to promote embryonic stem cells survival, is robustly adipogenic and induces postnatal adipose tissue formation in vivo of transplanted adipose stem/progenitor cells (ASCs) and recruited endogenous cells. In vitro, Ptn stimulated human adipose tissue derived ASCs to differentiate into lipid-laden adipocytes by upregulating peroxisome proliferator-activated receptor (PPARγ) and CCAAT/enhancer-binding protein-α (C/EBPα), with differentiated cells increasingly secreting adiponectin, leptin, glycerol and total triglycerides...
January 27, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28120756/-3d-bioprinting-in-regenerative-medicine-and-tissue-engineering
#8
Jean-Christophe Fricain, Hugo De Olivera, Raphaël Devillard, Jérome Kalisky, Murielle Remy, Virginie Kériquel, Damien Le Nihounen, Agathe Grémare, Vera Guduric, Alexis Plaud, Nicolas L'Heureux, Joëlle Amédée, Sylvain Catros
Additive manufacturing covers a number of fashionable technologies that attract the interest of researchers in biomaterials and tissue engineering. Additive manufacturing applied to regenerative medicine covers two main areas: 3D printing and biofabrication. If 3D printing has penetrated the world of regenerative medicine, bioassembly and bioimprinting are still in their infancy. The objective of this paper is to make a non-exhaustive review of these different complementary aspects of additive manufacturing in restorative and regenerative medicine or for tissue engineering...
January 2017: Médecine Sciences: M/S
https://www.readbyqxmd.com/read/28120511/collagen-heparin-sulfate-scaffolds-fabricated-by-a-3d-bioprinter-improved-mechanical-properties-and-neurological-function-after-spinal-cord-injury-in-rats
#9
Chong Chen, Ming-Liang Zhao, Ren-Kun Zhang, Gang Lu, Chang-Yu Zhao, Feng Fu, Hong-Tao Sun, Sai Zhang, Yue Tu, Xiao-Hong Li
Effective treatments promoting axonal regeneration and functional recovery for spinal cord injury (SCI) are still in the early stages of development. Most approaches have been focused on providing supportive substrates for guiding neurons and overcoming the physical and chemical barriers to healing that arise after SCI. Although collagen has become a promising natural substrate with good compatibility, its low mechanical properties restrict its potential applications. The mechanical properties mainly rely on the composition and pore structure of scaffolds...
January 25, 2017: Journal of Biomedical Materials Research. Part A
https://www.readbyqxmd.com/read/28106947/3d-bioprinting-and-its-in-vivo-applications
#10
REVIEW
Nhayoung Hong, Gi-Hoon Yang, JaeHwan Lee, GeunHyung Kim
The purpose of 3D bioprinting technology is to design and create functional 3D tissues or organs in situ for in vivo applications. 3D cell-printing, or additive biomanufacturing, allows the selection of biomaterials and cells (bioink), and the fabrication of cell-laden structures in high resolution. 3D cell-printed structures have also been used for applications such as research models, drug delivery and discovery, and toxicology. Recently, numerous attempts have been made to fabricate tissues and organs by using various 3D printing techniques...
January 20, 2017: Journal of Biomedical Materials Research. Part B, Applied Biomaterials
https://www.readbyqxmd.com/read/28103751/3d-bioprinting-towards-the-era-of-manufacturing-human-organs-as-spare-parts-for-healthcare-and-medicine
#11
Tanveer Ahmad Mir, Makoto Nakamura
3D printing technology has been used in industrial worlds for decades. 3D bioprinting has recently received an increasing attention across the globe among researchers, academicians, students and even the ordinary people. This emerging technique has a great potential to engineer highly organized functional bioconstructs with complex geometries and tailored components for engineering bio-artificial tissues/organs for widespread applications, including transplantation, therapeutic investigation, drug development, bioassay and disease modelling...
January 19, 2017: Tissue Engineering. Part B, Reviews
https://www.readbyqxmd.com/read/28088667/cell-laden-hydrogels-for-osteochondral-and-cartilage-tissue-engineering
#12
REVIEW
Jingzhou Yang, Yu Shrike Zhang, Kan Yue, Ali Khademhosseini
: Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry...
January 11, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28087487/bioprinting-for-vascular-and-vascularized-tissue-biofabrication
#13
REVIEW
Pallab Datta, Bugra Ayan, Ibrahim T Ozbolat
: Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date...
January 11, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28071596/3d-bioprinting-of-gelma-scaffolds-triggers-mineral-deposition-by-primary-human-osteoblasts
#14
Christine McBeth, Jasmin Lauer, Michael Ottersbach, Jennifer Campbell, Andre Sharon, Alexis F Sauer-Budge
Due to its relatively low level of antigenicity and high durability, titanium has successfully been used as the major material for biological implants. However, because the typical interface between titanium and tissue precludes adequate transmission of load into the surrounding bone, over time, load-bearing implants tend to loosen and revision surgeries are required. Osseointegration of titanium implants requires presentation of both biological and mechanical cues that promote attachment of and trigger mineral deposition by osteoblasts...
January 10, 2017: Biofabrication
https://www.readbyqxmd.com/read/28067628/3d-bioprinting-improving-in-vitro-models-of-metastasis-with-heterogeneous-tumor-microenvironments
#15
REVIEW
Jacob L Albritton, Jordan S Miller
Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology...
January 1, 2017: Disease Models & Mechanisms
https://www.readbyqxmd.com/read/28057791/from-microscale-devices-to-3d-printing-advances-in-fabrication-of-3d-cardiovascular-tissues
#16
REVIEW
Anton V Borovjagin, Brenda M Ogle, Joel L Berry, Jianyi Zhang
Current strategies for engineering cardiovascular cells and tissues have yielded a variety of sophisticated tools for studying disease mechanisms, for development of drug therapies, and for fabrication of tissue equivalents that may have application in future clinical use. These efforts are motivated by the need to extend traditional 2-dimensional (2D) cell culture systems into 3D to more accurately replicate in vivo cell and tissue function of cardiovascular structures. Developments in microscale devices and bioprinted 3D tissues are beginning to supplant traditional 2D cell cultures and preclinical animal studies that have historically been the standard for drug and tissue development...
January 6, 2017: Circulation Research
https://www.readbyqxmd.com/read/28057483/the-bioink-a-comprehensive-review-on-bioprintable-materials
#17
REVIEW
Monika Hospodiuk, Madhuri Dey, Donna Sosnoski, Ibrahim T Ozbolat
This paper discusses "bioink", bioprintable materials used in three dimensional (3D) bioprinting processes, where cells and other biologics are deposited in a spatially controlled pattern to fabricate living tissues and organs. It presents the first comprehensive review of existing bioink types including hydrogels, cell aggregates, microcarriers and decellularized matrix components used in extrusion-, droplet- and laser-based bioprinting processes. A detailed comparison of these bioink materials is conducted in terms of supporting bioprinting modalities and bioprintability, cell viability and proliferation, biomimicry, resolution, affordability, scalability, practicality, mechanical and structural integrity, bioprinting and post-bioprinting maturation times, tissue fusion and formation post-implantation, degradation characteristics, commercial availability, immune-compatibility, and application areas...
January 3, 2017: Biotechnology Advances
https://www.readbyqxmd.com/read/28031977/a-bioink-by-any-other-name-terms-concepts-and-constructions-related-to-3d-bioprinting
#18
EDITORIAL
William G Whitford, James B Hoying
No abstract text is available yet for this article.
September 2016: Future Science OA
https://www.readbyqxmd.com/read/28024609/mesenchymal-stem-cell-laden-hybrid-scaffold-for-regenerating-subacute-tympanic-membrane-perforation
#19
Chul Ho Jang, SeungHyun Ahn, Jae Whi Lee, Byeong Ha Lee, Hyeongjin Lee, GeunHyung Kim
Tympanic membrane (TM) perforation is one of the most common otology complications. To date, there has not been reported TM regeneration using bioprinted scaffold. The purpose of this study was to evaluate the efficacy and feasibility of bioprinted polycaprolactone/collagen/alginate-mesenchymal stem cell (PCAMSC) scaffolds for the regeneration of subacute TM perforation. Sprague-Dawley rats were used in an animal model of subacute TM perforation. In the experimental group (n=7), bioprinted 3D PCAMSC scaffold was placed on the perforation...
March 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28008428/materials-and-scaffolds-in-medical-3d-printing-and-bioprinting-in-the-context-of-bone-regeneration
#20
Martin Heller, Heide-Katharina Bauer, Elisabeth Goetze, Matthias Gielisch, Ibrahim T Ozbolat, Kazim K Moncal, Elias Rizk, Hermann Seitz, Michael Gelinsky, Heinz C Schröder, Xiaohong H Wang, Werner E G Müller, Bilal Al-Nawas
The structural and functional repair of lost bone is still one of the biggest challenges in regenerative medicine. In many cases, autologous bone is used for the reconstruction of bone tissue; however, the availability of autologous material is limited, which always means additional stress to the patient. Due to this, more and more frequently various biocompatible materials are being used instead for bone augmentation. In this context, in order to ensure the structural function of the bone, scaffolds are implanted and fixed into the bone defect, depending on the medical indication...
2016: International Journal of Computerized Dentistry
keyword
keyword
55118
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"