keyword
MENU ▼
Read by QxMD icon Read
search

Cardiac engineering

keyword
https://www.readbyqxmd.com/read/28937406/tolerance-in-xenotransplantation
#1
Kazuhiko Yamada, Megan Sykes, David H Sachs
PURPOSE OF REVIEW: This review describes recent progress in tolerance-inducing strategies across xenogeneic immunological barriers as well as the potential benefit of a tolerance strategy for islets and kidney xenotransplantation. RECENT FINDINGS: Using advanced gene editing technologies, xenotransplantation from multitransgenic alpha-1,3-galactosyltransferase knockout pigs has demonstrated marked prolongation of renal xenograft survival, ranging from days to greater than several months for life-supporting kidneys, and more than 2 years in a heterotopic nonlife-supporting cardiac xenograft model...
September 20, 2017: Current Opinion in Organ Transplantation
https://www.readbyqxmd.com/read/28936269/microfibrous-scaffolds-enhance-endothelial-differentiation-and-organization-of-induced-pluripotent-stem-cells
#2
Joseph J Kim, Luqia Hou, Guang Yang, Nicholas P Mezak, Maureen Wanjare, Lydia M Joubert, Ngan F Huang
INTRODUCTION: Human induced pluripotent stem cells (iPSCs) are a promising source of endothelial cells (iPSC-ECs) for engineering three-dimensional (3D) vascularized cardiac tissues. To mimic cardiac microvasculature, in which capillaries are oriented in parallel, we hypothesized that endothelial differentiation of iPSCs within topographically aligned 3D scaffolds would be a facile one-step approach to generate iPSC-ECs as well as induce aligned vascular organization. METHODS: Human iPSCs underwent endothelial differentiation within electrospun 3D polycaprolactone (PCL) scaffolds having either randomly oriented or parallel-aligned microfibers...
October 2017: Cellular and Molecular Bioengineering
https://www.readbyqxmd.com/read/28934329/biochemical-and-biomechanical-properties-of-the-pacemaking-sinoatrial-node-extracellular-matrix-are-distinct-from-contractile-left-ventricular-matrix
#3
Jessica M Gluck, Anthony W Herren, Sergey Yechikov, Hillary K J Kao, Ambereen Khan, Brett S Phinney, Nipavan Chiamvimonvat, James W Chan, Deborah K Lieu
Extracellular matrix plays a role in differentiation and phenotype development of its resident cells. Although cardiac extracellular matrix from the contractile tissues has been studied and utilized in tissue engineering, extracellular matrix properties of the pacemaking sinoatrial node are largely unknown. In this study, the biomechanical properties and biochemical composition and distribution of extracellular matrix in the sinoatrial node were investigated relative to the left ventricle. Extracellular matrix of the sinoatrial node was found to be overall stiffer than that of the left ventricle and highly heterogeneous with interstitial regions composed of predominantly fibrillar collagens and rich in elastin...
2017: PloS One
https://www.readbyqxmd.com/read/28931213/a-review-on-the-efficacy-and-toxicity-of-different-doxorubicin-nanoparticles-for-targeted-therapy-in-metastatic-breast-cancer
#4
REVIEW
Ayman Shafei, Wesam El-Bakly, Ahmed Sobhy, Omar Wagdy, Ahmed Reda, Omar Aboelenin, Amr Marzouk, Khalil El Habak, Randa Mostafa, Mahmoud A Ali, Mahmoud Ellithy
In metastatic breast cancer (MBC), the conventional doxorubicin (DOX) has various problems due to lack of selectivity with subsequent therapeutic failure and adverse effects. DOX- induced cardiotoxicity is a major problem that necessitates the presence of new forms to decrease the risk of associated morbidity. Nanoparticles (NPs) are considered an important approach to selectively increase drug accumulation inside tumor cells and thus decreasing the associated side effects. Tumor cells develop resistance to chemotherapeutic agents through multiple mechanisms, one of which is over expression of efflux transporters...
September 16, 2017: Biomedicine & Pharmacotherapy, Biomédecine & Pharmacothérapie
https://www.readbyqxmd.com/read/28924210/kinase-inhibitor-screening-using-artificial-neural-networks-and-engineered-cardiac-biowires
#5
Genevieve Conant, Samad Ahadian, Yimu Zhao, Milica Radisic
Kinase inhibitors are often used as cancer targeting agents for their ability to prevent the activation of cell growth and proliferation signals. Cardiotoxic effects have been identified for some marketed kinase inhibitors that were not detected during clinical trials. We hypothesize that more predictive cardiac functional assessments of kinase inhibitors on human myocardium can be established by combining a high-throughput two-dimensional (2D) screening assay and a high-content three-dimensional (3D) engineered cardiac tissue (Biowire(TM)) based assay, and using human induced pluripotent stem cell-derived CMs (hiPSC-CMs)...
September 18, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28923324/regenerating-heart-using-a-novel-compound-and-human-wharton-jelly-mesenchymal-stem-cells
#6
Shahram Rabbani, Masoud Soleimani, Mohammad Imani, Mohammad Sahebjam, Ali Ghiaseddin, Seyed Mahdi Nassiri, Jalil Majd Ardakani, Maryam Tajik Rostami, Arash Jalali, Bahmanshir Mousanassab, Mahsa Kheradmandi, Seyed Hossein Ahmadi Tafti
BACKGROUND: Myocardial infarction is a major problem in health system and most conventional therapy is not led to restoration of the health. Stem cell therapy is a method to regenerate the heart but today appropriate cell source and scaffold selection as extracellular matrix to achieve the best effect is disputing. AIM OF THE STUDY: In this study a combination of human Wharton jelly mesenchymal stem cells (HWJMSCs) with a novel compound consisting polyethylene glycol (PEG), hyaluronic acid and chitosan is presented to heart regeneration...
April 2017: Archives of Medical Research
https://www.readbyqxmd.com/read/28919576/simulation-of-the-effects-of-oxygen-carriers-and-scaffold-geometry-on-oxygen-distribution-and-cell-growth-in-a-channeled-scaffold-for-engineering-myocardium
#7
Alireza Zehi Mofrad, Shohreh Mashayekhan, Dariush Bastani
This study proposes a mathematical model to evaluate the impact of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a 3D cardiac construct using computational fluid dynamics (CFD). Flow equations, oxygen balance equation and cell balance equation were solved using special initial and boundary conditions. The modeling results revealed that 55% increase in cardiac cell density occurred by using 6.4% perfluorocarbon oxygen carrier (PFC) compared to pure culture medium without PFC supplementation...
September 14, 2017: Mathematical Biosciences
https://www.readbyqxmd.com/read/28900504/platelet-targeted-delivery-of-peripheral-blood-mononuclear-cells-to-the-ischemic-heart-restores-cardiac-function-after-ischemia-reperfusion-injury
#8
Melanie Ziegler, Xiaowei Wang, Bock Lim, Ephraem Leitner, Franco Klingberg, Victoria Ching, Yu Yao, Dexing Huang, Xiao-Ming Gao, Helen Kiriazis, Xiao-Jun Du, Jody J Haigh, Alex Bobik, Christoph E Hagemeyer, Ingo Ahrens, Karlheinz Peter
One of the major hurdles in intravenous regenerative cell therapy is the low homing efficiency to the area where these cells are needed. To increase cell homing toward areas of myocardial damage, we developed a bispecific tandem single-chain antibody (Tand-scFvSca-1+GPIIb/IIIa) that binds with high affinity to activated platelets via the activated glycoprotein (GP)IIb/IIIa receptor, and to a subset of peripheral blood mononuclear cells (PBMC) which express the stem cell antigen-1 (Sca-1) receptor. Methods: The Tand-scFvSca-1+GPIIb/IIIa was engineered, characterized and tested in a mouse model of ischemia-reperfusion (IR) injury applying left coronary artery occlusion for 60 min...
2017: Theranostics
https://www.readbyqxmd.com/read/28900152/a-3d-magnetic-tissue-stretcher-for-remote-mechanical-control-of-embryonic-stem-cell-differentiation
#9
Vicard Du, Nathalie Luciani, Sophie Richard, Gaëtan Mary, Cyprien Gay, François Mazuel, Myriam Reffay, Philippe Menasché, Onnik Agbulut, Claire Wilhelm
The ability to create a 3D tissue structure from individual cells and then to stimulate it at will is a major goal for both the biophysics and regenerative medicine communities. Here we show an integrated set of magnetic techniques that meet this challenge using embryonic stem cells (ESCs). We assessed the impact of magnetic nanoparticles internalization on ESCs viability, proliferation, pluripotency and differentiation profiles. We developed magnetic attractors capable of aggregating the cells remotely into a 3D embryoid body...
September 12, 2017: Nature Communications
https://www.readbyqxmd.com/read/28898757/extracellular-matrix-derived-extracellular-vesicles-promote-cardiomyocyte-growth-and-electrical-activity-in-engineered-cardiac-atria
#10
Minae An, Kihwan Kwon, Junbeom Park, Dong-Ryeol Ryu, Jung-A Shin, Jihee Lee Kang, Ji Ha Choi, Eun-Mi Park, Kyung Eun Lee, Minna Woo, Minsuk Kim
Extracellular matrix (ECM) plays a critical role in the provision of the necessary microenvironment for the proper regeneration of the cardiac tissue. However, specific mechanisms that lead to ECM-mediated cardiac regeneration are not well understood. To elucidate the potential mechanisms, we investigated ultra-structures of the cardiac ECM using electron microscopy. Intriguingly, we observed large quantities of micro-vesicles from decellularized right atria. RNA and protein analyses revealed that these contained exosomal proteins and microRNAs (miRNAs), which we referred to herein as ECM-derived extracellular vesicles (ECM-EVs)...
September 4, 2017: Biomaterials
https://www.readbyqxmd.com/read/28895502/characterization-of-the-epicardial-adipose-tissue-in-decellularized-human-scaled-whole-hearts-implications-for-the-whole-heart-tissue-engineering
#11
Payam Akhyari, Fabian Oberle, Joern Huelsmann, Hans Heid, Stefan Lehr, Andreas Barbian, Sentaro Nakanishi, Hug Aubin, Alexander Jenke, Artur Lichtenberg
Whole-organ engineering is an innovative field of regenerative medicine with growing translational perspectives. Recent reports suggest the feasibility of decellularization and repopulation of entire human size hearts. However, little is known about the susceptibility of epicardial adipose tissue (EAT) to decellularization. Here, human size hearts of ovine donors were subjected to perfusion-based decellularization using detergent solutions. Upon basic histological evaluation and total DNA measurement myocardial regions prove largely decellularized while EAT demonstrated cellular remnants, further confirmed by transmission electron microscopy...
September 12, 2017: Tissue Engineering. Part A
https://www.readbyqxmd.com/read/28895403/injectable-carbon-nanotube-functionalized-reverse-thermal-gel-promotes-cardiomyocytes-survival-and-maturation
#12
Brisa Peña, Susanna Bosi, Brian A Aguado, Daniele Borin, Nikki L Farnsworth, Evgenia Dobrinskikh, Teisha J Rowland, Valentina Martinelli, Mark Jeong, Matthew R G Taylor, Carlin S Long, Robin Shandas, Orfeo Sbaizero, Maurizio Prato, Kristi S Anseth, Daewon Park, Luisa Mestroni
The ability of the adult heart to regenerate cardiomyocytes (CMs) lost after injury is limited, generating interest in developing efficient cell-based transplantation therapies. Rigid carbon nanotubes (CNTs) scaffolds have been used to improve CMs viability, proliferation, and maturation, but they require undesirable invasive surgeries for implantation. To overcome this limitation, we developed an injectable reverse thermal gel (RTG) functionalized with CNTs (RTG-CNT) that transitions from a solution at room temperature to a three-dimensional (3D) gel-based matrix shortly after reaching body temperature...
September 20, 2017: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/28892929/connective-tissue-growth-factor-transgenic-mouse-develops-cardiac-hypertrophy-lean-body-mass-and-alopecia
#13
Edem Nuglozeh
INTRODUCTION: Connective Tissue Growth Factor (CTGF/CCN2) is one of the six members of cysteine-rich, heparin-binding proteins, secreted as modular protein and recognised to play a major function in cell processes such as adhesion, migration, proliferation and differentiation as well as chondrogenesis, skeletogenesis, angiogenesis and wound healing. The capacity of CTGF to interact with different growth factors lends an important role during early and late development, especially in the anterior region of the embryo...
July 2017: Journal of Clinical and Diagnostic Research: JCDR
https://www.readbyqxmd.com/read/28888004/cardiomyocyte-coculture-on-layered-fibrous-scaffolds-assembled-from-micropatterned-electrospun-mats
#14
Yaowen Liu, Guisen Xu, Jiaojun Wei, Qiang Wu, Xiaohong Li
Challenges remain in engineering cardiac tissues with functional and morphological properties similar to those of native myocardium. In the current study, micropatterned fibrous mats are obtained by deposition of electrospun fibers on lithographic collectors to reproduce the anisotropic structure of myocardium, and carbon nanotubes are included in fibers to provide conductivities at the same level of cardiac muscles. The patterned mats are assembled layer-by-layer into patterned scaffolds for coculture of primary cardiomyocytes (CMs) with cardiac fibroblasts (CFs) and endothelial cells (ECs)...
December 1, 2017: Materials Science & Engineering. C, Materials for Biological Applications
https://www.readbyqxmd.com/read/28882733/-risk-of-fatal-non-fatal-events-in-patients-with-previous-coronary-heart-disease-acute-myocardial-infarction-and-treatment-with-non-steroidal-anti-inflammatory-drugs
#15
REVIEW
L Muñoz Olmo, J Juan Armas, J J Gomariz García
BACKGROUND: Primary Care is the fundamental axis of our health system and obliges us to be consistent with our prescriptions. The non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with increased cardiovascular risk and increased risk of all causes of death, as well as acute myocardial infarction (AMI) in patients with a previous myocardial infarction. Pain and cardiac patient management are 2 basic pillars in our daily activity, and we must know the limitations of NSAIDs in patients with established cardiovascular risk...
September 4, 2017: Semergen
https://www.readbyqxmd.com/read/28875579/a-cardiac-patch-from-aligned-microvessel-and-cardiomyocyte-patches
#16
Jeremy A Schaefer, Pilar A Guzman, Sonja B Riemenschneider, Timothy J Kamp, Robert T Tranquillo
Cardiac tissue engineering aims to produce replacement tissue patches in the lab to replace or treat infarcted myocardium. However, current patches lack pre-formed microvascularization and are therefore limited in thickness and force production. In the present study, we sought to assess whether a bi-layer patch composed of a layer made from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and a microvessel layer composed of self-assembled human blood outgrowth endothelial cells (BOECs) and pericytes (PCs) was capable of engrafting on the epicardial surface of a nude rat infarct model and becoming perfused by the host four weeks after acute implantation...
September 5, 2017: Journal of Tissue Engineering and Regenerative Medicine
https://www.readbyqxmd.com/read/28875152/artificial-cardiac-muscle-with-or-without-the-use-of-scaffolds
#17
REVIEW
Yifei Li, Donghui Zhang
During the past several decades, major advances and improvements now promote better treatment options for cardiovascular diseases. However, these diseases still remain the single leading cause of death worldwide. The rapid development of cardiac tissue engineering has provided the opportunity to potentially restore the contractile function and retain the pumping feature of injured hearts. This conception of cardiac tissue engineering can enable researchers to produce autologous and functional biomaterials which represents a promising technique to benefit patients with cardiovascular diseases...
2017: BioMed Research International
https://www.readbyqxmd.com/read/28863042/the-bioengineered-cardiac-left-ventricle
#18
Nikita M Patel, Ravi K Birla
Left ventricle and aortic valve underdevelopment are presentations in the congenital cardiac condition hypoplastic left heart syndrome (HLHS); current clinical treatments involve right ventricle refunctionalization. Cardiac organoid models provide simplified open chambers engineered into a flow loop, to ameliorate ventricle-type function. Complete bioengineered ventricle development presents a significant advancement in cardiac organoids. This study provides the foundation for bioengineered complete ventricle (BECV) fabrication...
August 31, 2017: ASAIO Journal: a Peer-reviewed Journal of the American Society for Artificial Internal Organs
https://www.readbyqxmd.com/read/28857113/myofibrils-in-cardiomyocytes-tend-to-assemble-along-the-maximal-principle-stress-directions
#19
Hongyan Yuan, Bahador Marzban, Kevin Kit Parker
The mechanisms underlying the spatial organization of self-assembled myofibrils in cardiac tissues remain incompletely understood. By modeling cells as elastic solids under active cytoskeletal contraction, we found a good correlation between the predicted maximal principal stress directions and the in vitro myofibril orientations in individual cardiomyocytes. This implies that actomyosin fibers tend to assemble along the maximal tensile stress directions. By considering the dynamics of focal adhesion and myofibril formation in the model, we showed that the different patterns of myofibril organizations in mature versus immature cardiomyocytes can be explained as the consequence of the different levels of force-dependent remodeling of focal adhesions...
August 31, 2017: Journal of Biomechanical Engineering
https://www.readbyqxmd.com/read/28857082/basic-research-minimally-invasive-delivery-of-engineered-cardiac-patches-for-heart-repair
#20
Karina Huynh
No abstract text is available yet for this article.
October 2017: Nature Reviews. Cardiology
keyword
keyword
5505
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"