Read by QxMD icon Read

Primary visual cortex

Richard Baumgartner, William Cho, Alexandre Coimbra, Christopher Chen, Zaiqi Wang, Arie Struyk, Narayanaswamy Venketasubramanian, May Low, Cindy Gargano, Fuqiang Zhao, Donald Williams, Torsten Reese, Stephanie Seah, Dai Feng, Sonya Apreleva, Esben Petersen, Jeffrey L Evelhoch
PURPOSE: To present the testretest and contrast dose effect results of cerebral blood volume (CBV) functional MRI (fMRI) in healthy human volunteers using ferumoxytol (Feraheme), an ultrasmall-superparamagnetic iron oxide (USPIO) nanoparticle. MATERIALS AND METHODS: This was an open-label, two-period, fixed-sequence study in healthy young volunteers. In eight subjects, using a 3 Tesla field strength system, blood oxygen level dependent (BOLD) and CBV fMRI were acquired in response to a visual black-and-white checkboard stimulation paradigm using an escalating ferumoxytol dose design (250, 350, and 510 mg iron)...
October 24, 2016: Journal of Magnetic Resonance Imaging: JMRI
Mark N Wallace, Matthew J Cronin, Richard W Bowtell, Ian S Scott, Alan R Palmer, Penny A Gowland
Functional magnetic resonance imaging (fMRI) studies of the auditory region of the temporal lobe would benefit from the availability of image contrast that allowed direct identification of the primary auditory cortex, as this region cannot be accurately located using gyral landmarks alone. Previous work has suggested that the primary area can be identified in magnetic resonance (MR) images because of its relatively high myelin content. However, MR images are also affected by the iron content of the tissue and in this study we sought to confirm that different MR image contrasts did correlate with the myelin content in the gray matter and were not primarily affected by iron content as is the case in the primary visual and somatosensory areas...
2016: Frontiers in Neuroscience
Alasdair I Ross, Thomas Schenk, Jutta Billino, Mary J Macleod, Constanze Hesse
Previous research found that a patient with cortical blindness (homonymous hemianopia) was able to successfully avoid an obstacle placed in his blind field, despite reporting no conscious awareness of it [Striemer, C. L., Chapman, C. S., & Goodale, M. A., 2009, PNAS, 106(37), 15996-16001]. This finding led to the suggestion that dorsal stream areas, that are assumed to mediate obstacle avoidance behaviour, may obtain their visual input primarily from subcortical pathways. Hence, it was suggested that normal obstacle avoidance behaviour can proceed without input from the primary visual cortex...
October 3, 2016: Cortex; a Journal Devoted to the Study of the Nervous System and Behavior
Tom A Hummer, K Luan Phan, David W Kern, Martha K McClintock
Evidence suggests the putative human pheromone Δ4,16-androstadien-3-one (androstadienone), a natural component of human sweat, increases attention to emotional information when passively inhaled, even in minute amounts. However, the neural mechanisms underlying androstadienone's impact on the perception of emotional stimuli have not been clarified. To characterize how the compound modifies neural circuitry while attending to emotional information, 22 subjects (11 women) underwent two fMRI scanning sessions, one with an androstadienone solution and one with a carrier control solution alone on their upper lip...
September 29, 2016: Psychoneuroendocrinology
Satoru Kondo, Takashi Yoshida, Kenichi Ohki
A minicolumn is the smallest anatomical module in the cortical architecture, but it is still in debate whether it serves as functional units for cortical processing. In the rodent primary visual cortex (V1), neurons with different preferred orientations are mixed horizontally in a salt and pepper manner, but vertical functional organization was not examined. In this study, we found that neurons with similar orientation preference are weakly but significantly clustered vertically in a short length and horizontally in the scale of a minicolumn...
October 21, 2016: Nature Communications
Gergő Orbán, Pietro Berkes, József Fiser, Máté Lengyel
Neural responses in the visual cortex are variable, and there is now an abundance of data characterizing how the magnitude and structure of this variability depends on the stimulus. Current theories of cortical computation fail to account for these data; they either ignore variability altogether or only model its unstructured Poisson-like aspects. We develop a theory in which the cortex performs probabilistic inference such that population activity patterns represent statistical samples from the inferred probability distribution...
October 19, 2016: Neuron
Zixin Yong, Po-Jang Hsieh, Dan Milea
Acquired auditory-visual synesthesia (AVS) is a rare neurological sign, in which specific auditory stimulation triggers visual experience. In this study, we used event-related fMRI to explore the brain regions correlated with acquired monocular sound-induced phosphenes, which occurred 2 months after unilateral visual loss due to an ischemic optic neuropathy. During the fMRI session, 1-s pure tones at various pitches were presented to the patient, who was asked to report occurrence of sound-induced phosphenes by pressing one of the two buttons (yes/no)...
October 19, 2016: Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale
Anthony G Hudetz, Jeannette A Vizuete, Siveshigan Pillay, George A Mashour
Consciousness has been linked to the repertoire of brain states at various spatiotemporal scales. Anesthesia is thought to modify consciousness by altering information integration in cortical and thalamocortical circuits. At a mesoscopic scale, neuronal populations in the cortex form synchronized ensembles whose characteristics are presumably state-dependent but this has not been rigorously tested. In this study, spontaneous neuronal activity was recorded with 64-contact microelectrode arrays in primary visual cortex of chronically instrumented, unrestrained rats under stepwise decreasing levels of desflurane anesthesia (8%, 6%, 4%, and 2% inhaled concentrations) and wakefulness (0% concentration)...
October 14, 2016: Neuroscience
Clive R Rosenthal, David Soto
Cortical regions as early as primary visual cortex have been implicated in recognition memory. Here, we outline the challenges that this presents for neurobiological accounts of recognition memory. We conclude that understanding the role of early visual cortex (EVC) in this process will require the use of protocols that mask stimuli from visual awareness.
October 14, 2016: Trends in Neurosciences
Siyu Zhang, Min Xu, Wei-Cheng Chang, Chenyan Ma, Johnny Phong Hoang Do, Daniel Jeong, Tiffany Lei, Jiang Lan Fan, Yang Dan
Long-range projections from the frontal cortex are known to modulate sensory processing in multiple modalities. Although the mouse has become an increasingly important animal model for studying the circuit basis of behavior, the functional organization of its frontal cortical long-range connectivity remains poorly characterized. Here we used virus-assisted circuit mapping to identify the brain networks for top-down modulation of visual, somatosensory and auditory processing. The visual cortex is reciprocally connected to the anterior cingulate area, whereas the somatosensory and auditory cortices are connected to the primary and secondary motor cortices...
October 17, 2016: Nature Neuroscience
Andrew C Lynn, Aarthi Padmanabhan, Daniel Simmonds, William Foran, Michael N Hallquist, Beatriz Luna, Kirsten O'Hearn
Face recognition abilities improve between adolescence and adulthood over typical development (TD), but plateau in autism, leading to increasing face recognition deficits in autism later in life. Developmental differences between autism and TD may reflect changes between neural systems involved in the development of face encoding and recognition. Here, we focused on whole-brain connectivity with the fusiform face area (FFA), a well-established face-preferential brain region. Older children, adolescents, and adults with and without autism completed the Cambridge Face Memory Test, and a matched car memory test, during fMRI scanning...
October 16, 2016: Developmental Science
Konstantinos Nasiotis, Simon Clavagnier, Sylvain Baillet, Christopher C Pack
Magnetoencephalography (MEG) is used in clinical and fundamental studies of brain functions, primarily for the excellent temporal resolution it provides. The spatial resolution is often assumed to be poor, because of the ill-posed nature of MEG source modeling. However, the question of spatial resolution in MEG has seldom been studied in quantitative detail. Here we use the well-known retinotopic organization of the primary visual cortex (V1) as a benchmark for estimating the spatial resolution of MEG source imaging...
October 12, 2016: NeuroImage
F Vallone, E Vannini, A Cintio, M Caleo, A Di Garbo
Epilepsy is characterized by substantial network rearrangements leading to spontaneous seizures and little is known on how an epileptogenic focus impacts on neural activity in the contralateral hemisphere. Here, we used a model of unilateral epilepsy induced by injection of the synaptic blocker tetanus neurotoxin (TeNT) in the mouse primary visual cortex (V1). Local field potential (LFP) signals were simultaneously recorded from both hemispheres of each mouse in acute phase (peak of toxin action) and chronic condition (completion of TeNT effects)...
September 2016: Physical Review. E
Merve Cikili Uytun, Emel Karakaya, Didem Behice Oztop, Serife Gengec, Kazım Gumus, Sevgi Ozmen, Selim Doğanay, Semra Icer, Esra Demirci, Saliha Demirel Ozsoy
It is known that patients with Attention Deficit and Hyperactivity disorder (ADHD) and Conduct disorder (CD) commonly shows greater symptom severity than those with ADHD alone and worse outcomes. This study researches whether Default mode network (DMN) is altered in adolescents with ADHD + CD, relative to ADHD alone and controls or not. Ten medication-naïve boys with ADHD + CD, ten medication-naïve boys with ADHD and 10-age-matched typically developing (TD) controls underwent functional magnetic resonance imaging (fMRI) scans in the resting state and neuropsychological tasks such as the Wisconsin Card Sorting Test (WCST), Stroop Test TBAG Form (STP), Auditory Verbal learning Test (AVLT), Visual Auditory Digit Span B (VADS B) were applied to all the subjects included...
October 13, 2016: Brain Imaging and Behavior
Sudie E Back, Jenna L McCauley, Kristina J Korte, Daniel F Gros, Virginia Leavitt, Kevin M Gray, Mark B Hamner, Stacia M DeSantis, Robert Malcolm, Kathleen T Brady, Peter W Kalivas
OBJECTIVE: The antioxidant N-acetylcysteine is being increasingly investigated as a therapeutic agent in the treatment of substance use disorders (SUDs). This study explored the efficacy of N-acetylcysteine in the treatment of posttraumatic stress disorder (PTSD), which frequently co-occurs with SUD and shares impaired prefrontal cortex regulation of basal ganglia circuitry, in particular at glutamate synapses in the nucleus accumbens. METHODS: Veterans with PTSD and SUD per DSM-IV criteria (N = 35) were randomly assigned to receive a double-blind, 8-week course of N-acetylcysteine (2,400 mg/d) or placebo plus cognitive-behavioral therapy for SUD (between March 2013 and April 2014)...
October 11, 2016: Journal of Clinical Psychiatry
Raphaël Mizzi, George A Michael
Over the past few decades, evidence has accumulated showing that, at subcortical levels, visual attention depends partly on the extrageniculate neural pathways, that is, those pathways that bypass the lateral geniculate nucleus and circumvent the primary visual cortex. Working in concert with neuroscience, experimental psychology has contributed considerably to the understanding of the role these pathways play through the use of 3 behavioral cues: nasal-temporal asymmetries, responses to S-cone stimuli, and responses to perceptually suppressed stimuli...
October 10, 2016: Psychological Review
Iris Asllani, Pamelia Slattery, Alexander Fafard, Marykay Pavol, Ronald M Lazar, Randolph S Marshall
Despite being considered an important anatomical parameter directly related to neuronal density, cortical thickness is not routinely assessed in studies of the human brain in vivo. This paucity has been largely due to the size and convoluted shape of the human cortex, which has made it difficult to develop automated algorithms that can measure cortical thickness efficiently and reliably. Since the development of such an algorithm by Fischl and Dale in 2000, the number of studies investigating the relationship between cortical thickness and other physiological parameters in the brain has been on the rise...
2016: NeuroImage: Clinical
Katharine A Shapcott, Joscha T Schmiedt, Richard C Saunders, Alexander Maier, David A Leopold, Michael C Schmid
A fundamental property of brain function is that the spiking activity of cortical neurons is variable and that some of this variability is correlated between neurons. Correlated activity not due to the stimulus arises from shared input but the neuronal circuit mechanisms that result in these noise correlations are not fully understood. Here we tested in the visual system if correlated variability in mid-level area V4 of visual cortex is altered following extensive lesions of primary visual cortex (V1). To this end we recorded longitudinally the neuronal correlations in area V4 of two behaving macaque monkeys before and after a V1 lesion while the monkeys fixated a grey screen...
October 10, 2016: Scientific Reports
Evgenia Kalogeraki, Justyna Pielecka-Fortuna, Janika M Hüppe, Siegrid Löwel
The primary visual cortex (V1) is widely used to study brain plasticity, which is not only crucial for normal brain function, such as learning and memory, but also for recovery after brain injuries such as stroke. In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in V1 declines with age and is compromised by a lesion in adjacent and distant cortical regions. In contrast, mice raised in an enriched environment (EE), exhibit lifelong OD plasticity and are protected from losing OD plasticity after a stroke-lesion in the somatosensory cortex...
2016: Frontiers in Aging Neuroscience
Tomofumi Oga, Tsuguhisa Okamoto, Ichiro Fujita
Neurons in the mammalian primary visual cortex (V1) are systematically arranged across the cortical surface according to the location of their receptive fields (RFs), forming a visuotopic (or retinotopic) map. Within this map, the foveal visual field is represented by a large cortical surface area, with increasingly peripheral visual fields gradually occupying smaller cortical areas. Although cellular organization in the retina, such as the spatial distribution of ganglion cells, can partially account for the eccentricity-dependent differences in the size of cortical representation, whether morphological differences exist across V1 neurons representing different eccentricities is unclear...
2016: Frontiers in Neural Circuits
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"