Read by QxMD icon Read

Forward osmosis

Laura Chekli, Youngjin Kim, Sherub Phuntsho, Sheng Li, Noreddine Ghaffour, TorOve Leiknes, Ho Kyong Shon
The present study focused on the performance of the FDFO process to achieve simultaneous water reuse from wastewater and production of nutrient solution for hydroponic application. Bio-methane potential (BMP) measurements were firstly carried out to determine the effect of osmotic concentration of wastewater achieved in the FDFO process on the anaerobic activity. Results showed that 95% water recovery from the FDFO process is the optimum value for further AnMBR treatment. Nine different fertilizers were then tested based on their FO performance (i...
November 24, 2016: Journal of Environmental Management
Wenhai Luo, Hop V Phan, Ming Xie, Faisal I Hai, William E Price, Menachem Elimelech, Long D Nghiem
This study systematically compares the performance of osmotic membrane bioreactor - reverse osmosis (OMBR-RO) and conventional membrane bioreactor - reverse osmosis (MBR-RO) for advanced wastewater treatment and water reuse. Both systems achieved effective removal of bulk organic matter and nutrients, and almost complete removal of all 31 trace organic contaminants investigated. They both could produce high quality water suitable for recycling applications. During OMBR-RO operation, salinity build-up in the bioreactor reduced the water flux and negatively impacted the system biological treatment by altering biomass characteristics and microbial community structure...
November 12, 2016: Water Research
Niada Bajraktari, Henrik T Madsen, Mathias F Gruber, Sigurd Truelsen, Elzbieta L Jensen, Henrik Jensen, Claus Hélix-Nielsen
Forward osmosis (FO) membranes have gained interest in several disciplines for the rejection and concentration of various molecules. One application area for FO membranes that is becoming increasingly popular is the use of the membranes to concentrate or dilute high value compound solutions such as pharmaceuticals. It is crucial in such settings to control the transport over the membrane to avoid losses of valuable compounds, but little is known about the rejection and transport mechanisms of larger biomolecules with often flexible conformations...
November 15, 2016: Membranes
Ming Xie, Stephen R Gray
Membrane silica scaling hinders sustainable water production. Understanding silica scaling mechanisms provides options for better membrane process management. In this study, we elucidated silica scaling mechanisms on an asymmetric cellulose triacetate (CTA) membrane and polyamide thin-film composite (TFC) membrane. Scaling filtration showed that TFC membrane was subjected to more severe water flux decline in comparison with the CTA membrane, together with different scaling layer morphology. To elucidate the silica scaling mechanisms, silica species in the aqueous solution were characterised by mass spectrometry as well as light scattering...
January 1, 2017: Water Research
Tobias Hey, Agata Zarebska, Niada Bajraktari, Jörg Vogel, Claus Hélix-Nielsen, Jes la Cour Jansen, Karin Jönsson
Municipal wastewater treatment commonly involves mechanical, biological and chemical treatment steps as state-of-the-art technologies for protecting the environment from adverse effects. The biological treatment step consumes the most energy and can create greenhouse gases. This study investigates municipal wastewater treatment without the biological treatment step, including the effects of different pre-treatment configurations, e.g., direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pre-treatment, e...
November 2, 2016: Environmental Technology
Tobias Hey, Niada Bajraktari, Jörg Vogel, Claus Hélix Nielsen, Jes la Cour Jansen, Karin Jönsson
Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration permeates were then concentrated using forward osmosis (FO). Aquaporin Inside(TM) FO membranes were used for both the microsieve filtrate and microfiltration permeates, and Hydration Technologies Inc.-thin-film composite membranes for the microfiltration permeate using only NaCl as the draw solution...
October 24, 2016: Environmental Technology
Jing Li, Aping Niu, Chun-Jiao Lu, Jing-Hui Zhang, Muhammad Junaid, Phyllis R Strauss, Ping Xiao, Xiao Wang, Yi-Wei Ren, De-Sheng Pei
Landfill leachate (LL) is harmful to aquatic environment because it contains high concentrations of dissolved organic matter, inorganic components, heavy metals, and other xenobiotics. Thus, the remediation of LL is crucial for environmental conservation. Here, a potential application of the forward osmosis (FO) filtration process with ammonium bicarbonate (NH4HCO3) as a draw solution (DS) was investigated to remediate membrane bioreactor-treated LL (M-LL). After the leachate treatment, the toxicity and removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) were evaluated using zebrafish and cultured human cells...
October 21, 2016: Chemosphere
B S Chanukya, Navin K Rastogi
The present study deals with the effect of higher and lower molecular weight compounds present in the feed on concentration polarization during forward osmosis concentration and its mitigation by the application of ultrasound. The effects of ultrasound on transmembrane water flux at different forward osmosis membrane orientations and different model feed solutions consisting of sucrose and pectin have also been evaluated. The feed containing sucrose and pectin subjected towards active layer of the membrane was found to be the most suitable orientation...
January 2017: Ultrasonics Sonochemistry
Prashant Praveen, Jonathan Yun Ping Heng, Kai-Chee Loh
Discharge of wastewater with high nitrogen and phosphorus content is a major cause of eutrophication. In this study, a microfiltration-based membrane photobioreactor (MPBR) and forward osmosis-based osmotic membrane photobioreactor (OMPBR) have been operated with Chlorella vulgaris for continuous tertiary wastewater treatment. Both the bioreactors exhibited good biomass accumulation (over 2g/L), although the OMPBR achieved better nutrients removal due to high rejection properties of the membranes. At 2days HRT, the OMPBR achieved nitrogen and phosphorus removal efficiencies of 86-99% and 100%, respectively, whereas the corresponding values in the MPBR were 48-97% and 46%, respectively...
December 2016: Bioresource Technology
Szilárd S Bucs, Rodrigo Valladares Linares, Johannes S Vrouwenvelder, Cristian Picioreanu
This study evaluates with numerical simulations supported by experimental data the impact of biofouling on membrane performance in a cross-flow forward osmosis (FO) system. The two-dimensional numerical model couples liquid flow with solute transport in the FO feed and draw channels, in the FO membrane support layer and in the biofilm developed on one or both sides of the membrane. The developed model was tested against experimental measurements at various osmotic pressure differences and in batch operation without and with the presence of biofilm on the membrane active layer...
September 20, 2016: Water Research
Mohan Qin, Ibrahim M Abu-Reesh, Zhen He
Osmotic microbial fuel cells (OsMFCs) take advantages of synergy between forward osmosis (FO) and microbial fuel cells (MFCs) to accomplish wastewater treatment, current generation, and high-quality water extraction. As an FO based technology, OsMFCs also encounter reverse salt flux (RSF) that is the backward transport of salt ions across the FO membrane into the treated wastewater. This RSF can reduce water flux, contaminate the treated wastewater, and increase the operational expense, and thus must be properly addressed before any possible applications...
November 15, 2016: Water Research
Rumwald Leo G Lecaros, Zih-Chi Syu, Yu-Hsuan Chiao, S Ranil Wickramasinghe, Yan-Li Ji, Quan-Fu An, Wei-Song Hung, Chien-Chieh Hu, Kueir-Rarn Lee, Juin-Yih Lai
A thermoresponsive chitosan derivative was synthesized by reacting chitosan (CS) with butyl glycidyl ether (BGE) to break the inter- and intramolecular hydrogen bonds of the polymer. An aqueous solution of the thermoresponsive CS derivative exhibits a lower critical solution temperature (LCST) than CS, and it undergoes a phase transition separation when the temperature changes. Successful incorporation of BGE into the CS was confirmed by FTIR and XPS analyses. Varying the BGE content and the concentration of the aqueous solution produced different LCST ranges, as shown by transmittance vs temperature curves...
October 11, 2016: Environmental Science & Technology
Qingwu Long, Liang Shen, Rongbiao Chen, Jiaqi Huang, Shu Xiong, Yan Wang
The development of suitable draw solution in forward osmosis (FO) process has attracted the growing attention for water treatment purpose. In this study, a series of organic phosphonate salts (OPSs) are synthesized by one-step Mannich-like reaction, confirmed by FTIR and NMR characterizations, and applied as novel draw solutes in FO applications. Their solution properties including osmotic pressures and viscosities, as well as their FO performance as a function of the solution concentration are investigated systematically...
October 13, 2016: Environmental Science & Technology
Qing Liu, Guanglei Qiu, Zhengzhong Zhou, Jingguo Li, Gary Lee Amy, Jianping Xie, Jim Yang Lee
The organic foulants and bacteria in secondary wastewater treatment can seriously impair the membrane performance in a water treatment plant. The embedded electrode approach using an externally applied potential to repel organic foulants and inhibit bacterial adhesion can effectively reduce the frequency of membrane replacement. Electrode embedment in membranes is often carried out by dispensing a conductor (e.g., carbon nanotubes, or CNTs) in the membrane substrate, which gives rise to two problems: the leaching-out of the conductor and a percolation-limited membrane conductivity that results in an added energy cost...
October 4, 2016: Environmental Science & Technology
Yan Sun, Jiayu Tian, Zhiwei Zhao, Wenxin Shi, Dongmei Liu, Fuyi Cui
In this work, membrane fouling behavior in a direct forward osmosis (FO) and an osmotic membrane bioreactor (OMBR) for municipal wastewater treatment was systematically investigated and compared. During the long-term operation, much severer flux decline was observed for the direct FO than that for the OMBR. The cake layer was found to be much thicker, together with large amounts of microorganisms growing on the membrane surface in direct FO. Interestingly, no obvious attachment of microorganisms on the membrane surface was observed in the OMBR...
November 1, 2016: Water Research
Pin Zhao, Baoyu Gao, Qinyan Yue, Pan Liu, Ho Kyong Shon
Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5hr at unadjusted pH3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1...
August 2016: Journal of Environmental Sciences (China)
Parimal Pal, Pallabi Das, Sankha Chakrabortty, Ritwik Thakura
Dynamic modelling and simulation of a nanofiltration-forward osmosis integrated complete system was done along with economic evaluation to pave the way for scale up of such a system for treating hazardous pharmaceutical wastes. The system operated in a closed loop not only protects surface water from the onslaught of hazardous industrial wastewater but also saves on cost of fresh water by turning wastewater recyclable at affordable price. The success of dynamic modelling in capturing the relevant transport phenomena is well reflected in high overall correlation coefficient value (R (2) > 0...
August 12, 2016: Environmental Science and Pollution Research International
Guanglei Qiu, Sui Zhang, Divya Shankari Srinivasa Raghavan, Subhabrata Das, Yen-Peng Ting
This work uncovers an important feature of the forward osmosis membrane bioreactor (FOMBR) process: the decoupling of contaminants retention time (CRT) and hydraulic retention time (HRT). Based on this concept, the capability of the hybrid microfiltration-forward osmosis membrane bioreactor (MF-FOMBR) in achieving high through-put treatment of municipal wastewater with enhanced phosphorus recovery was explored. High removal of TOC and NH4(+)-N (90% and 99%, respectively) was achieved with HRTs down to 47min, with the treatment capacity increased by an order of magnitude...
November 2016: Bioresource Technology
Runnan Zhang, Yanan Liu, Mingrui He, Yanlei Su, Xueting Zhao, Menachem Elimelech, Zhongyi Jiang
One of the greatest challenges to the sustainability of modern society is an inadequate supply of clean water. Due to its energy-saving and cost-effective features, membrane technology has become an indispensable platform technology for water purification, including seawater and brackish water desalination as well as municipal or industrial wastewater treatment. However, membrane fouling, which arises from the nonspecific interaction between membrane surface and foulants, significantly impedes the efficient application of membrane technology...
August 5, 2016: Chemical Society Reviews
Zhongyun Liu, Yunxia Hu
Microbial attachment and biofilm formation on filtration membrane can greatly compromise its flux and separation efficiency. Here, a simple and facile approach has been developed to in situ generate silver nanoparticles (Ag NPs) on the thin film composite forward osmosis (TFC FO) membrane for sustainable antibiofouling performances. Mussel-inspired dopamine chemistry was applied to grow polydopamine coating on both surfaces of FO membranes, followed by the generation of Ag NPs upon a simple dip coating in silver nitrate aqueous solution...
August 24, 2016: ACS Applied Materials & Interfaces
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"