Read by QxMD icon Read

Stem cell plasticity and neurodegenerative diseases

Ricardo Ramírez-Barrantes, Ivanny Marchant, Pablo Olivero
Aging induces physical deterioration, loss of the blood brain barrier, neuronal loss-induced mental and neurodegenerative diseases. Hypotalamus-hypophysis-gonad axis aging precedes symptoms of menopause or andropause and is a major determinant of sensory and cognitive integrated function. Sexual steroids support important functions, exert pleiotropic effects in different sensory cells, promote regeneration, plasticity and health of the nervous system. Their diminution is associated with impaired cognitive and mental health and increased risk of neurodegenerative diseases...
August 2016: Neural Regeneration Research
Clara Herrera-Arozamena, Olaia Martí-Marí, Martín Estrada, Mario de la Fuente Revenga, María Isabel Rodríguez-Franco
The central nervous system of adult mammals has long been considered as a complex static structure unable to undergo any regenerative process to refurbish its dead nodes. This dogma was challenged by Altman in the 1960s and neuron self-renewal has been demonstrated ever since in many species, including humans. Aging, neurodegenerative, and some mental diseases are associated with an exponential decrease in brain neurogenesis. Therefore, the controlled pharmacological stimulation of the endogenous neural stem cells (NSCs) niches might counteract the neuronal loss in Alzheimer's disease (AD) and other pathologies, opening an exciting new therapeutic avenue...
2016: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Giulia Tyzack, Andras Lakatos, Rickie Patani
Astrocytes abound in the human central nervous system (CNS) and play a multitude of indispensable roles in neuronal homeostasis and regulation of synaptic plasticity. While traditionally considered to be merely ancillary supportive cells, their complex yet fundamental relevance to brain physiology and pathology have only become apparent in recent times. Beyond their myriad canonical functions, previously unrecognised region-specific functional heterogeneity of astrocytes is emerging as an important attribute and challenges the traditional perspective of CNS-wide astrocyte homogeneity...
2016: Current Stem Cell Reports
Gizem Tincer, Violeta Mashkaryan, Prabesh Bhattarai, Caghan Kizil
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and a worldwide health challenge. Different therapeutic approaches are being developed to reverse or slow the loss of affected neurons. Another plausible therapeutic way that may complement the studies is to increase the survival of existing neurons by mobilizing the existing neural stem/progenitor cells (NSPCs) - i.e. "induce their plasticity" - to regenerate lost neurons despite the existing pathology and unfavorable environment. However, there is controversy about how NSPCs are affected by the unfavorable toxic environment during AD...
March 2016: Yale Journal of Biology and Medicine
Giti Zarinfard, Mina Tadjalli, Shahnaz Razavi, Mohammad Kazemi
The Schwann-like cells can be considered as promising in stem cell therapies, at least in experimental models. Human adipose-derived stem cells (ADSCs) are induced into Schwann-like cells (SC-like cells) and are cultured on either a plastic surface or laminin-coated plates. The findings here reveal that laminin is a critical component in extracellular matrix (ECM) of SC-like cells at in vitro. The survival rate of SC-like cells on a laminin matrix are measured through MTT assay and it is found that this rate is significantly higher than that of the cells grown on a plastic surface (P < 0...
August 9, 2016: Journal of Molecular Neuroscience: MN
Liliana Dell'Osso, Claudia Del Grande, Camilla Gesi, Claudia Carmassi, Laura Musetti
Increasing evidence highlights bipolar disorder as being associated with impaired neurogenesis, cellular plasticity, and resiliency, as well as with cell atrophy or loss in specific brain regions. This has led most recent research to focus on the possible neuroprotective effects of medications, and particularly interesting findings have emerged for lithium. A growing body of evidence from preclinical in vitro and in vivo studies has in fact documented its neuroprotective effects from different insults acting on cellular signaling pathways, both preventing apoptosis and increasing neurotrophins and cell-survival molecules...
2016: Neuropsychiatric Disease and Treatment
F Marxreiter, A Storch, J Winkler
Parkinson's disease (PD) is the most common age-related movement disorder and characterized by slowly progressive neurodegeneration resulting in motor symptoms, such as bradykinesia, rigidity, tremor and postural instability. Moreover, non-motor symptoms, such as hyposmia, anxiety and depression reduce the quality of life in PD. Motor symptoms are associated with a distinct striatal dopaminergic deficit resulting from axonal dysfunction and neuronal loss in the substantia nigra (SN). Recent progress in stem cell technology allows the optimization of cellular transplantation strategies in order to alleviate the motor deficit, which potentially leads to a reactivation of this therapeutic strategy...
August 2016: Der Nervenarzt
Xiao Huang, Yan-Li Luo, Yue-Shi Mao, Jian-Lin Ji
The major depressive disorder (MDD) is a relatively common mental disorder from which that hundreds of million people have suffered, leading to displeasing life quality, which is characterized by health damage and even suicidal thoughts. The complicated development and functioning of MDD is still under exploration. Long noncoding RNA (lncRNAs) are highly expressed in the brain, could affect neural stem cell maintenance, neurogenesis and gliogenesis, brain patterning, synaptic and stress responses, and neural plasticity...
June 15, 2016: Progress in Neuro-psychopharmacology & Biological Psychiatry
Maria Chiara Ciuffreda, Giuseppe Malpasso, Paola Musarò, Valentina Turco, Massimiliano Gnecchi
Mesenchymal stem cells (MSC) possess high plasticity and the potential to differentiate into several different cell types; this characteristic has implications for cell therapy and reparative biotechnologies. MSC have been originally isolated from the bone marrow (BM-MSC), but they have been found also in other tissues such as adipose tissue, cord blood, synovium, skeletal muscle, and lung. MSC are able to differentiate in vitro and in vivo into several cell types such as bone, osteocytes, chondrocytes, adipocytes, and skeletal myocytes, just to name a few...
2016: Methods in Molecular Biology
Ashok K Shetty, Bharathi Hattiangady
UNLABELLED: : As clinical application of neural stem cell (NSC) grafting into the brain would also encompass aged people, critical evaluation of engraftment of NSC graft-derived cells in the aged hippocampus has significance. We examined the engraftment and differentiation of alkaline phosphatase-positive NSCs expanded from the postnatal subventricular zone (SVZ), 3 months after grafting into the intact young or aged rat hippocampus. Graft-derived cells engrafted robustly into both young and aged hippocampi...
September 2016: Stem Cells Translational Medicine
Ali Darkazalli, Cynthia Vied, Crystal-Dawn Badger, Cathy W Levenson
Traumatic brain injury (TBI) results in a progressive disease state with many adverse and long-term neurological consequences. Mesenchymal stem cells (MSCs) have emerged as a promising cytotherapy and have been previously shown to reduce secondary apoptosis and cognitive deficits associated with TBI. Consistent with the established literature, we observed that systemically administered human MSCs (hMSCs) accumulate with high specificity at the TBI lesion boundary zone known as the penumbra. Substantial work has been done to illuminate the mechanisms by which MSCs, and the bioactive molecules they secrete, exert their therapeutic effect...
June 10, 2016: Journal of Neurotrauma
Jorge Valero, Iñaki Paris, Amanda Sierra
Lifestyle modulates brain function. Diet, stress levels, and physical exercise among other factors influence the "brain cognitive reserve", that is, the capacity of the brain to maintain a normal function when confronting neurodegenerative diseases, injury, and/or aging. This cognitive reserve relays on several cellular and molecular elements that contribute to brain plasticity allowing adaptive responses to cognitive demands, and one of its key components is the hippocampal neurogenic reserve. Hippocampal neural stem cells give rise to new neurons that integrate into the local circuitry and contribute to hippocampal functions such as memory and learning...
April 20, 2016: ACS Chemical Neuroscience
Ewa Ferensztajn-Rochowiak, Janusz K Rybakowski
Lithium has been used in modern psychiatry for more than 65 years, constituting a cornerstone for the long-term treatment of bipolar disorder. A number of biological properties of lithium have been discovered, including its hematological, antiviral and neuroprotective effects. In this article, a systematic review of the effect of lithium on hematopoietic, mesenchymal and neural stem cells is presented. The beneficial effects of lithium on the level of hematopoietic stem cells (HSC) and growth factors have been reported since 1970s...
April 2016: Pharmacological Reports: PR
Mihai Girlovanu, Sergiu Susman, Olga Soritau, Dan Rus-Ciuca, Carmen Melincovici, Anne-Marie Constantin, Carmen Mihaela Mihu
In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research...
2015: Clujul Medical (1957)
Takumi Miura, Tohru Sugawara, Atsushi Fukuda, Ryo Tamoto, Tomoyuki Kawasaki, Akihiro Umezawa, Hidenori Akutsu
In mice, leukemia inhibitory factor (LIF)-dependent primitive neural stem cells (NSCs) have a higher neurogenic potential than bFGF-dependent definitive NSCs. Therefore, expandable primitive NSCs are required for research and for the development of therapeutic strategies for neurological diseases. There is a dearth of suitable techniques for the generation of human long-term expandable primitive NSCs. Here, we have described a method for the conversion of human fibroblasts to LIF-dependent primitive NSCs using a strategy based on techniques for the generation of induced pluripotent stem cells (iPSCs)...
2015: Biology Open
Il-Shin Lee, Kwangsoo Jung, Il-Sun Kim, Haejin Lee, Miri Kim, Seokhwan Yun, Kyujin Hwang, Jeong Eun Shin, Kook In Park
BACKGROUND: Alzheimer's disease (AD) is an inexorable neurodegenerative disease that commonly occurs in the elderly. The cognitive impairment caused by AD is associated with abnormal accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, which are accompanied by inflammation. Neural stem cells (NSCs) are self-renewing, multipotential cells that differentiate into distinct neural cells. When transplanted into a diseased brain, NSCs repair and replace injured tissues after migration toward and engraftment within lesions...
2015: Molecular Neurodegeneration
Sonu Singh, Akanksha Mishra, Shubha Shukla
Oxidative stress and neuroinflammation are known causative factors in progressive degeneration of dopaminergic (DAergic) neurons in Parkinson's disease (PD). Neural stem cells (NSCs) contribute in maintaining brain plasticity; therefore, survival of NSCs and neuroblasts during neurodegenerative process becomes important in replenishing the pool of mature neuronal population. Acetyl-L-carnitine (ALCAR), present in almost all body cells, increases endogenous antioxidants and regulates bioenergetics. Currently, no information is available about the putative mechanism and neuroprotective effects of ALCAR in 6-hydroxydopamine (6-OHDA)-induced rat model of PD-like phenotypes...
September 2016: Molecular Neurobiology
Jan Cendelin
Stem cell-based and regenerative therapy may become a hopeful treatment for neurodegenerative diseases including hereditary cerebellar degenerations. Neurotransplantation therapy mainly aims to substitute lost cells, but potential effects might include various mechanisms including nonspecific trophic effects and stimulation of endogenous regenerative processes and neural plasticity. Nevertheless, currently, there remain serious limitations. There is a wide spectrum of human hereditary cerebellar degenerations as well as numerous cerebellar mutant mouse strains that serve as models for the development of effective therapy...
February 2016: Cerebellum
Majbrit M Jensen, Maria Arvaniti, Jens D Mikkelsen, Dominik Michalski, Lars H Pinborg, Wolfgang Härtig, Morten S Thomsen
Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes and modulating their function. Hence, changes in nAChR regulatory proteins such as Lynx proteins could underlie the dysregulation of nAChRs in AD. Using Western blotting, we detected bands corresponding to the Lynx proteins prostate stem cell antigen (PSCA) and Lypd6 in human cortex indicating that both proteins are present in the human brain...
April 2015: Neurobiology of Aging
Viviana Caputo, Andrea Ciolfi, Simone Macri, Antonio Pizzuti
MicroRNAs (miRNAs) are ~22 nucleotide non-coding RNAs that control gene expression post-transcriptionally by base pairing to mRNAs. MiRNAs are predicted to target ~50% of all protein-coding genes and functional studies indicate that they participate in the regulation of almost every cellular process. They also play a key role in pathogenetic mechanisms underlying several diseases, e.g. cancer, cardiovascular diseases, autoimmune diseases, and neurodegenerative diseases. Several miRNAs are expressed in the human brain where they contribute to equilibrium between maintenance and differentiation of neural stem cells...
2015: CNS & Neurological Disorders Drug Targets
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"