Read by QxMD icon Read

Electrochemical reforming

Xiulin Fan, Enyuan Hu, Xiao Ji, Yizhou Zhu, Fudong Han, Sooyeon Hwang, Jue Liu, Seongmin Bak, Zhaohui Ma, Tao Gao, Sz-Chian Liou, Jianming Bai, Xiao-Qing Yang, Yifei Mo, Kang Xu, Dong Su, Chunsheng Wang
Iron fluoride, an intercalation-conversion cathode for lithium ion batteries, promises a high theoretical energy density of 1922 Wh kg-1 . However, poor electrochemical reversibility due to repeated breaking/reformation of metal fluoride bonds poses a grand challenge for its practical application. Here we report that both a high reversibility over 1000 cycles and a high capacity of 420 mAh g-1 can be realized by concerted doping of cobalt and oxygen into iron fluoride. In the doped nanorods, an energy density of ~1000 Wh kg- 1 with a decay rate of 0...
June 13, 2018: Nature Communications
Chao Ma, Xiaolin Zhao, Litao Kang, Kai-Xue Wang, Jie-Sheng Chen, Wenqing Zhang, Jianjun Liu
Classical organic anode materials for Na-ion batteries are mostly based on conjugated carboxylate compounds which can stabilize added electrons by double-bond reformation mechanism. However, the variation of such organic compounds is quite limited. Based on experiment and computation results, we here report 1,4-Cyclohexanedicarboxylic acid (C8H12O4, CHDA) with non-conjugated ring (-C6H10-) connected with carboxylates can undergo electrochemical reactions with two Na ions, delivering a high charge specific capacity of 284 mA h g-1 (249 mA h g-1 after 100 cycles), and good rate performance...
June 2, 2018: Angewandte Chemie
Ruizhi Yu, Zhijuan Zhang, Sidra Jamil, Jiancheng Chen, Xiaohui Zhang, Xianyou Wang, Zhenhua Yang, Hongbo Shu, Xiukang Yang
Li-rich layered oxides (LLOs) with high specific capacities are favorable cathode materials with high-energy density. Unfortunately, the drawbacks of LLOs such as oxygen release, low conductivity, and depressed kinetics for lithium ion transport during cycling can affect the safety and rate capability. Moreover, they suffer severe capacity and voltage fading, which are major challenges for the commercializing development. To cure these issues, herein, the synthesis of high-performance antimony-doped LLO nanofibers by an electrospinning process is put forward...
May 16, 2018: ACS Applied Materials & Interfaces
Jinhai Lu, Changli Zhu, Changchang Pan, Wenlie Lin, John P Lemmon, Fanglin Chen, Chunsen Li, Kui Xie
Reforming CH4 into syngas using CO2 remains a fundamental challenge due to carbon deposition and nanocatalyst instability. We, for the first time, demonstrate highly efficient electrochemical reforming of CH4 /CO2 to produce syngas in a solid oxide electrolyser with CO2 electrolysis in the cathode and CH4 oxidation in the anode. In situ exsolution of an anchored metal/oxide interface on perovskite electrode delivers remarkably enhanced coking resistance and catalyst stability. In situ Fourier transform infrared characterizations combined with first principle calculations disclose the interface activation of CO2 at a transition state between a CO2 molecule and a carbonate ion...
March 2018: Science Advances
Sascha Nowak, Martin Winter
Lithium ion batteries are nowadays the state-of-the-art power sources for portable electronic devices and the most promising candidate for energy storage in large-size batteries, e.g., pure and hybrid vehicles. However, the degradation of the cell components minimizes both storage and operation lifetime (calendar and cycle life), which is called aging. Due to the numerous different aging effects, in either the single constituents or their interactions with each other, many reports about methodologies and techniques, both electrochemical and analytical, can be found in the literature...
February 20, 2018: Accounts of Chemical Research
Xiaolin Zhao, Wujie Qiu, Chao Ma, Yingqin Zhao, Kaixue Wang, Wenqing Zhang, Litao Kang, Jianjun Liu
Even though many organic cathodes have been developed and have made a significant improvement in energy density and reversibility, some organic materials always generate relatively low voltage and limited discharge capacity because their energy storage mechanism is solely based on redox reactions of limited functional groups [N-O, C═X (X = O, N, S)] linking to aromatic rings. Here, a series of cyclooctatetraene-based (C8 H8 ) organic molecules were demonstrated to have electrochemical activity of high-capacity and high-voltage from carbon rings by means of first-principles calculations and electronic structure analysis...
January 24, 2018: ACS Applied Materials & Interfaces
Molleigh B Preefer, Bernd Oschmann, Craig J Hawker, Ram Seshadri, Fred Wudl
We demonstrate a novel crosslinked disulfide system as a cathode material for Li-S cells that is designed with the two criteria of having only a single point of S-S scission and maximizing the ratio of S-S to the electrochemically inactive framework. The material therefore maximizes theoretical capacity while inhibiting the formation of polysulfide intermediates that lead to parasitic shuttle. The material we report contains a 1:1 ratio of S:C with a theoretical capacity of 609 mAh g(-1) . The cell gains capacity through 100 cycles and has 98 % capacity retention thereafter through 200 cycles, demonstrating stable, long-term cycling...
October 5, 2017: Angewandte Chemie
Lan Zhang, Kaihang Zhang, Zhaohui Shi, Suojiang Zhang
Li4Ti5O12 (LTO) is a promising anode material for electric vehicles (EVs) and electrochemical energy storage applications because of its safety, good rate capability, and long cycle life. At elevated temperature, such as 60 °C, it always shows poor cycle performance because of the instability between the electrode material and electrolyte, which may also lead to a serious gassing issue. In this article, a facile hydrothermal method is adopted to coat the LTO powder with a thin LiF layer, in which the LiF acts as an artificial solid electrolyte interface (SEI) layer to prevent the direct contact of LTO and electrolyte, thus improving the high-temperature cycle performance...
September 7, 2017: Langmuir: the ACS Journal of Surfaces and Colloids
Wail Al Zoubi, Muhammad Prisla Kamil, Hae Woong Yang, Young Gun Ko
The electrochemical roles of electron-donor and -acceptor agents in surface reforming of magnesium alloy were investigated via plasma electrolysis. The surface modification was performed in an aluminate-based electrolyte, having urea and hydrazine with inherent molecular structures, which might act as electron acceptor and donor during plasma-assisted electrochemical reaction. The presence of hydrazine working as donor would promote the formation of magnesium aluminates in the oxide layer, resulting in superior compactness of the oxide layer to that when urea was used as the working as acceptor since the precipitation of MgCO3 was favored in the electrolyte with urea...
August 30, 2017: ACS Applied Materials & Interfaces
Eva-Maria Köck, Michaela Kogler, Chen Zhuo, Lukas Schlicker, Maged F Bekheet, Andrew Doran, Aleksander Gurlo, Simon Penner
To account for the explanation of an eventual sensing and catalytic behavior of rhombohedral In2 O3 (rh-In2 O3 ) and the dependence of the metastability of the latter on gas atmospheres, in situ electrochemical impedance spectroscopic (EIS), Fourier-transform infrared spectroscopic (FT-IR), in situ X-ray diffraction and in situ thermogravimetric analyses in inert (helium) and reactive gases (hydrogen, carbon monoxide and carbon dioxide) have been conducted to link the gas-dependent electrical conductivity features and the surface chemical properties to its metastability towards cubic In2 O3 ...
July 26, 2017: Physical Chemistry Chemical Physics: PCCP
Wanwan Li, Han Lu, Ning Zhang, Mingming Ma
We report that a postsynthesis physical process (freeze-thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline-poly(vinyl alcohol) hydrogel after five freeze-thaw cycles (PPH-5) showed remarkable tensile strength (16.3 MPa), large elongation at break (407%), and high electrochemical capacitance (1053 F·g(-1)). The flexible supercapacitor based on PPH-5 provided a large capacitance (420 mF·cm(-2) and 210 F·g(-1)) and high energy density (18...
June 5, 2017: ACS Applied Materials & Interfaces
Chia-Yu Lin, Yu-Chien Chueh, Cheng-Hsien Wu
An nanoporous nickel oxyhydroxide-borate (NiBi) thin film, consisting of an aggregate of spherical particles self-assembled from NiBi nanopetals, has been synthesized using a simple and cost-effective pulse electrodeposition method without the addition of any surfactant, and demonstrated as an efficient, selective, and robust electrocatalyst in the electrochemical and photoelectrochemical reforming of methanol into formate.
June 29, 2017: Chemical Communications: Chem Comm
Fanglin Che, Su Ha, Jean-Sabin McEwen
The role of low concentrations of carbon complexes in hydrocarbon decomposition over transition metal surfaces has been a topic of much debate over the past decades. It is also a mystery as to whether or not electric fields can enhance hydrocarbon conversion in an electrochemical device at lower than normal reforming temperatures. To provide a "bottom-up" fundamental insight, C-H bond cleavage in methane over Ni-based catalysts was investigated. Our theoretical results show that the presence of carbon or carbide-like species at the interface between the Ni cluster and its metal-oxide support, as well as the application of an external positive electric field, can significantly increase the Ni oxidation state...
February 27, 2017: Angewandte Chemie
Xiaojing Zhao, Lei Dai, Qing Qin, Fei Pei, Chengyi Hu, Nanfeng Zheng
3D PdCu alloy nanosheets exhibit enhanced electrocatalytic activity toward hydrogen evolution reaction and ethanol oxidation reaction in alkaline media. Simultaneous hydrogen and acetate production via a solar-powered cell for ethanol reforming has been fabricated using the nanosheets as bifunctional electrocatalysts. The device is promising for the production of both hydrogen and value-added chemicals using renewable energy.
January 16, 2017: Small
Sen Liu, Xiaolong Zhao, Qingjiang Li, Nan Li, Wei Wang, Qi Liu, Hui Xu
Metal oxide-based electrochemical metallization memory (ECM) shows promising performance for next generation non-volatile memory. The negative-SET behavior has been observed in various oxide-based ECM devices. But the underlying mechanism of this behavior remains unaddressed and the role of the metal cation and oxygen vacancy in this behavior is unclear. In this work, we have observed two kinds of negative-SET (labeled as N-SET1 and N-SET2) behaviors in our Cu/ZrO2/Pt devices. Both the two behaviors can result in hard breakdown due to the high compliance current in reset process...
December 2016: Nanoscale Research Letters
Michael Kitching, Robin Butler, Enrico Marsili
Sustainable energy supplies are needed to supplement and eventually replace fossil fuels. Molecular hydrogen H2 is a clean burning, high-energy fuel that is also used as reducing gas in industrial processes. H2 is mainly synthesized by steam reforming of natural gas, a non-renewable fuel. There are biosynthetic strategies for H2 production; however, they are associated with poor yield and have high cost. The application of an electrochemical driving force in a microbial electrolysis cell (MEC) improves the yield of biological reactions...
January 2017: Enzyme and Microbial Technology
Kai Li, Lichao Jia, Xin Wang, Jian Pu, Bo Chi, Jian Li
Ni0.9 Fe0.1 alloy-supported solid oxide fuel cells with NiTiO3 (NTO) infiltrated into the cell support from 0 to 4 wt.% are prepared and investigated for CH4 steam reforming activity and electrochemical performance. The infiltrated NiTiO3 is reduced to TiO2 -supported Ni particles in H2 at 650 °C. The reforming activity of the Ni0.9 Fe0.1 -support is increased by the presence of the TiO2 -supported Ni particles; 3 wt.% is the optimal value of the added NTO, corresponding to the highest reforming activity, resistance to carbon deposition and electrochemical performance of the cell...
October 24, 2016: Scientific Reports
Ryan J Milcarek, Michael J Garrett, Amrish Baskaran, Jeongmin Ahn
Combustion based power generation has been accomplished for many years through a number of heat engine systems. Recently, a move towards small scale power generation and micro combustion as well as development in fuel cell research has created new means of power generation that combine solid oxide fuel cells with open flames and combustion exhaust. Instead of relying upon the heat of combustion, these solid oxide fuel cell systems rely on reforming of the fuel via combustion to generate syngas for electrochemical power generation...
October 2, 2016: Journal of Visualized Experiments: JoVE
Christopher Batchelor-McAuley, Christopher A Little, Stanislav V Sokolov, Enno Kätelhön, Giorgia Zampardi, Richard G Compton
The lipid soluble fluorophore Nile Red (9-diethylamino-5-benzo[α]phenoxazinone) is used to fluorescently and electrochemically label an organic-in-water emulsion, where the organic phase is an ionic liquid [P6,6,6,14][FAP]/toluene mixture. The optical detection of the individual droplets is enabled facilitating the in situ tracking and sizing of the suspended particles (average diameter = 530 nm, interquartile range = 180 nm). Through the use of a combined thin-layer optical/electrochemical cell, the irreversible accumulation of the droplets at an optically opaque carbon fiber electrode (diameter ∼7...
November 15, 2016: Analytical Chemistry
Dan Xu, Ranran Jiao, Yuanwei Sun, Dezhi Sun, Xianxi Zhang, Suyuan Zeng, Youying Di
MnS has been attracting more and more attentions in the fields of lithium ion batteries (LIBs) because of its high energy density and low voltage potential. In this paper, we present a simple method for the preparation of urchin-like γ-MnS microstructures using L-cysteine and MnCl2 · 4H2O as the starting materials. The urchin-like γ-MnS microstructures exhibit excellent cycling stability (823.4 mA h g(-1) at a current density of 500 mA g(-1), after 1000 cycles). And the discharge voltage is about 0...
December 2016: Nanoscale Research Letters
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"