Read by QxMD icon Read


Liang Zhang, Yan Zhao, Jian-Ya Qian, Shan Jiang, Jun Liu, Xiao-Long He
Photophobic (white) films were prepared with hydroxypropyl methylcellulose (HPMC) and monosodium phosphate (NaH2PO4) to overcome the redox reaction induced by titanium dioxide photocatalysis of HPMC/TiO2 white film. What's more, HPMC/NaH2PO4 white film could overcome the drying temperature dependent property of white films based on HPMC and calcium salts. Attenuated total reflection Fourier transform infrared spectroscopy, wide angel X-ray diffraction, small angle X-ray scattering, scanning electron microscope and texture analyzer were used to investigate the effect of NaH2PO4 on the short-range, supra-molecular structures and properties of HPMC film...
October 15, 2017: Carbohydrate Polymers
Javen S Weston, Jeffrey H Harwell, Brian P Grady
Mixtures of fumed fractal metal oxide nanoparticles (np's) dispersed in water, at a solution pH where one species is positively charged and the other is negatively charged, form yield stress gels at volume fractions as low as 1.5%, due to electrostatic heteroaggregation into networks as confirmed by small-angle neutron scattering. These gels exhibit a measurable yield stress and an apparent viscosity that follows a power law relationship with shear rate. Rotational and oscillatory shear rheology is presented for binary mixtures of fumed silica, fumed alumina, and fumed titania in aqueous dispersions...
August 18, 2017: Soft Matter
Shuai Liu, Yinyan Wang, Kaibin Xu, Zheng Wang, Xing Fan, Chuanbao Zhang, Shaowu Li, Xiaoguang Qiu, Tao Jiang
Necrosis is a hallmark feature of glioblastoma (GBM). This study investigated the prognostic role of necrotic patterns in GBM using fractal dimension (FD) and lacunarity analyses of magnetic resonance imaging (MRI) data and evaluated the role of lacunarity in the biological processes leading to necrosis. We retrospectively reviewed clinical and MRI data of 95 patients with GBM. FD and lacunarity of the necrosis on MRI were calculated by fractal analysis and subjected to survival analysis. We also performed gene ontology analysis in 32 patients with available RNA-seq data...
August 16, 2017: Scientific Reports
Sumit Dutta, Saima Afroz Siddiqui, Jean Anne Currivan-Incorvia, Caroline A Ross, Marc A Baldo
Magnetic nanowires are the foundation of several promising nonvolatile computing devices, most notably magnetic racetrack memory and domain wall logic. Here, we determine the analog information capacity in these technologies, analyzing a magnetic nanowire containing a single domain wall. Although wires can be deliberately patterned with notches to define discrete positions for domain walls, the line edge roughness of the wire can also trap domain walls at dimensions below the resolution of the fabrication process, determining the fundamental resolution limit for the placement of a domain wall...
August 16, 2017: Nano Letters
Xiaojing Zhong, Peng Yu, Shenliang Chen
Extreme storm events and their consequent shoreline changes are of great importance for understanding coastal evolution and assessing storm hazards. This work investigates the fractal properties of the spatial distributions of shoreline changes caused by storms. Wavelet analysis and upper-truncated power law (UTPL) fitting are used to study the power spectra of shoreline changes and to evaluate the upper limits of the cross-shore erosion and accretion. During a period affected by storms, the alongshore shoreline change patterns are strong on the 15 km scale but are weak with lower spectral power on the 20 km scale...
August 15, 2017: Scientific Reports
N A Usov, O N Serebryakova, V P Tarasov
A specific absorption rate of a dilute assembly of various random clusters of iron oxide nanoparticles in alternating magnetic field has been calculated using Landau-Lifshitz stochastic equation. This approach simultaneously takes into account both the presence of thermal fluctuations of the nanoparticle magnetic moments and magneto-dipole interaction between the nanoparticles of the clusters. It is shown that for usual 3D clusters, the intensity of the magneto-dipole interaction is determined mainly by the cluster packing density η = N p V/V cl , where N p is the average number of the particles in the cluster, V is the nanoparticle volume, and V cl is the cluster volume...
August 14, 2017: Nanoscale Research Letters
John Garland
Cancer induction is a highly complex process involving hundreds of different inducers but whose eventual outcome is the same. Clearly, it is essential to understand how signalling pathways and networks generated by these inducers interact to regulate cell behaviour and create the cancer phenotype. While enormous strides have been made in identifying key networking profiles, the amount of data generated far exceeds our ability to understand how it all "fits together". The number of potential interactions is astronomically large and requires novel approaches and extreme computation methods to dissect them out...
September 2017: Critical Reviews in Oncology/hematology
Hana Koorehdavoudi, Paul Bogdan, Guopeng Wei, Radu Marculescu, Jiang Zhuang, Rika Wright Carlsen, Metin Sitti
To add to the current state of knowledge about bacterial swimming dynamics, in this paper, we study the fractal swimming dynamics of populations of Serratia marcescens bacteria both in vitro and in silico, while accounting for realistic conditions like volume exclusion, chemical interactions, obstacles and distribution of chemoattractant in the environment. While previous research has shown that bacterial motion is non-ergodic, we demonstrate that, besides the non-ergodicity, the bacterial swimming dynamics is multi-fractal in nature...
July 2017: Proceedings. Mathematical, Physical, and Engineering Sciences
Shushu Feng, Genying Yu, Xiang Cai, Mahoro Eulade, Hongjun Lin, Jianrong Chen, Yong Liu, Bao-Qiang Liao
Fractal roughness is one of the most important properties of a fractal surface. In this study, it was found that, randomly rough membrane surface was a fractal surface, which could be digitally modeled by a modified two-variable Weierstrass-Mandelbrot (WM) function. Fractal roughness of membrane surfaces has a typical power function relation with the statistical roughness of the modeled surface. Assessment of interfacial interactions showed that an increase in fractal roughness of membrane surfaces will strengthen and prolong the interfacial interactions between membranes and foulants, and under conditions in this study, will significantly increase the adhesion propensity of a foulant particle on membrane surface...
July 29, 2017: Bioresource Technology
Jung Hyup Kim, Xiaonan Yang
This laboratory experiment was designed to use fractal dimension as a new method to analyze pupil dilation to evaluate the level of complexity in a multitasking environment. By using the eye-head integrated tracking system, we collected both pupil responses and head positions while participants conducted both process monitoring task and Multi-Attribute Task Battery (MATB-II) tasks. There was a significant effect of scenario complexity on a composite index of multitasking performance (Low Complexity » High Complexity)...
November 2017: Applied Ergonomics
Anna Stage Vergmann, Rebecca Broe, Line Kessel, Jesper Leth Hougaard, Sören Möller, Kirsten Ohm Kyvik, Michael Larsen, Inger Christine Munch, Jakob Grauslund
Purpose: To determine the genetic contribution to the pattern of retinal vascular branching expressed by its fractal dimension. Methods: This was a cross-sectional study of 50 monozygotic and 49 dizygotic, same-sex twin pairs aged 20 to 46 years. In 50°, disc-centered fundus photographs, the retinal vascular fractal dimension was measured using the box-counting method and compared within monozygotic and dizygotic twin pairs using Pearson correlation coefficients...
August 1, 2017: Investigative Ophthalmology & Visual Science
R Besselink, T M Stawski, A E S Van Driessche, L G Benning
Densely packed surface fractal aggregates form in systems with high local volume fractions of particles with very short diffusion lengths, which effectively means that particles have little space to move. However, there are no prior mathematical models, which would describe scattering from such surface fractal aggregates and which would allow the subdivision between inter- and intraparticle interferences of such aggregates. Here, we show that by including a form factor function of the primary particles building the aggregate, a finite size of the surface fractal interfacial sub-surfaces can be derived from a structure factor term...
December 7, 2016: Journal of Chemical Physics
Aurel Jurjiu, Mircea Galiceanu, Alexandru Farcasanu, Liviu Chiriac, Flaviu Turcu
In this paper, we focus on the relaxation dynamics of Sierpinski hexagon fractal polymer. The relaxation dynamics of this fractal polymer is investigated in the framework of the generalized Gaussian structure model using both Rouse and Zimm approaches. In the Rouse-type approach, by performing real-space renormalization transformations, we determine analytically the complete eigenvalue spectrum of the connectivity matrix. Based on the eigenvalues obtained through iterative algebraic relations we calculate the averaged monomer displacement and the mechanical relaxation moduli (storage modulus and loss modulus)...
December 7, 2016: Journal of Chemical Physics
Zoltan Nagy, Peter Mukli, Peter Herman, Andras Eke
Physiological processes-such as, the brain's resting-state electrical activity or hemodynamic fluctuations-exhibit scale-free temporal structuring. However, impacts common in biological systems such as, noise, multiple signal generators, or filtering by transport function, result in multimodal scaling that cannot be reliably assessed by standard analytical tools that assume unimodal scaling. Here, we present two methods to identify breakpoints or crossovers in multimodal multifractal scaling functions. These methods incorporate the robust iterative fitting approach of the focus-based multifractal formalism (FMF)...
2017: Frontiers in Physiology
Jin Qian, Li Wei, Yaoguo Wu, Qilin Wang, Xiaoying Fu, Xiaochao Zhang, Xing Chang, Lianlian Wang, Xiangjun Pei
A comparative study on denitrifying sludge granulation with different electron donors (sulfide, thiosulfate and organics) was carried out. Longer time was spent on sulfide-denitrifying granular sludge (DGS) cultivation (88 days) than thiosulfate- and organics-DGS cultivations (57 days). All the three DGS were characterized in terms of particle size distribution, sludge settling ability (indicated by sludge volume index and settling velocity), permeability (indicated by fractal dimension) and extracellular polymeric substances (EPS, including polysaccharide and protein) secretion...
July 19, 2017: Chemosphere
Anna V Müller, Clara B Marschner, Annemarie T Kristensen, Bo Wiinberg, Amy F Sato, Jose M A Rubio, Fintan J McEvoy
Fractal analysis of canine pulmonary vessels could allow quantification of their space-filling properties. Aims of this prospective, analytical, cross-sectional study were to describe methods for reconstructing three dimensional pulmonary arterial vascular trees from computed tomographic pulmonary angiogram, applying fractal analyses of these vascular trees in dogs with and without diseases that are known to predispose to thromboembolism, and testing the hypothesis that diseased dogs would have a different fractal dimension than healthy dogs...
August 8, 2017: Veterinary Radiology & Ultrasound
Yuankun Xue, Paul Bogdan
Through an elegant geometrical interpretation, the multi-fractal analysis quantifies the spatial and temporal irregularities of the structural and dynamical formation of complex networks. Despite its effectiveness in unweighted networks, the multi-fractal geometry of weighted complex networks, the role of interaction intensity, the influence of the embedding metric spaces and the design of reliable estimation algorithms remain open challenges. To address these challenges, we present a set of reliable multi-fractal estimation algorithms for quantifying the structural complexity and heterogeneity of weighted complex networks...
August 8, 2017: Scientific Reports
Zakiya Shireen, Sujin B Babu
In a soft matter system, controlling the structure of the amorphous materials has been a key challenge. In this work, we have modeled irreversible diffusion limited cluster aggregation of binary colloids, which serves as a model for chemical gels. Irreversible aggregation of binary colloidal particles leads to the formation of a percolating cluster of one species or both species which are also called bigels. Before the formation of the percolating cluster, the system forms a self-similar structure defined by a fractal dimension...
August 7, 2017: Journal of Chemical Physics
Dan Zhao, Vianney Gimenez-Pinto, Andrew M Jimenez, Longxi Zhao, Jacques Jestin, Sanat K Kumar, Brooke Kuei, Enrique D Gomez, Aditya Shanker Prasad, Linda S Schadler, Mohammad M Khani, Brian C Benicewicz
While ∼75% of commercially utilized polymers are semicrystalline, the generally low mechanical modulus of these materials, especially for those possessing a glass transition temperature below room temperature, restricts their use for structural applications. Our focus in this paper is to address this deficiency through the controlled, multiscale assembly of nanoparticles (NPs), in particular by leveraging the kinetics of polymer crystallization. This process yields a multiscale NP structure that is templated by the lamellar semicrystalline polymer morphology and spans NPs engulfed by the growing crystals, NPs ordered into layers in the interlamellar zone [spacing of [Formula: see text] (10-100 nm)], and NPs assembled into fractal objects at the interfibrillar scale, [Formula: see text] (1-10 μm)...
July 26, 2017: ACS Central Science
Małgorzata Franus, Grzegorz Jozefaciuk, Lidia Bandura, Krzysztof Lamorski, Mieczysław Hajnos, Wojciech Franus
An admixture of lightweight aggregate substrates (beidellitic clay containing 10 wt % of natural clinoptilolite or Na-P1 zeolite) with used motor oil (1 wt %-8 wt %) caused marked changes in the aggregates' microstructure, measured by a combination of mercury porosimetry (MIP), microtomography (MT), and scanning electron microscopy. Maximum porosity was produced at low (1%-2%) oil concentrations and it dropped at higher concentrations, opposite to the aggregates' bulk density. Average pore radii, measured by MIP, decreased with an increasing oil concentration, whereas larger (MT) pore sizes tended to increase...
October 18, 2016: Materials
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"