Read by QxMD icon Read

natural fractals

Franziska Taubert, Rico Fischer, Jürgen Groeneveld, Sebastian Lehmann, Michael S Müller, Edna Rödig, Thorsten Wiegand, Andreas Huth
Remote sensing enables the quantification of tropical deforestation with high spatial resolution. This in-depth mapping has led to substantial advances in the analysis of continent-wide fragmentation of tropical forests. Here we identified approximately 130 million forest fragments in three continents that show surprisingly similar power-law size and perimeter distributions as well as fractal dimensions. Power-law distributions have been observed in many natural phenomena such as wildfires, landslides and earthquakes...
February 14, 2018: Nature
M B Avinash, Thimmaiah Govindaraju
The term architectonics has its roots in the architectural and philosophical (as early as 1600s) literature that refers to "the theory of structure" and "the structure of theory", respectively. The concept of architectonics has been adapted to advance the field of molecular self-assembly and termed as molecular architectonics. In essence, the methodology of organizing molecular units in the required and controlled configurations to develop advanced functional systems for materials and biological applications comprises the field of molecular architectonics...
January 24, 2018: Accounts of Chemical Research
Frigyes Samuel Racz, Peter Mukli, Zoltan Nagy, Andras Eke
Brain function is organized as a network of functional connections between different neuronal populations with connection strengths dynamically changing in time and space. Studies investigating functional connectivity (FC) usually follow a static approach when describing FC by considering the connectivity strengths constant, however a dynamic approach seems more reasonable, as this way the spatio-temporal dynamics of the underlying system can also be captured. Objective: The scale-free, i.e. fractal nature of neural dynamics is an inherent property of the nervous system...
January 19, 2018: Physiological Measurement
Hai-Chuan Xu, Gao-Feng Gu, Wei-Xing Zhou
In the canonical framework, we propose an alternative approach for the multifractal analysis based on the detrending moving average method (MF-DMA). We define a canonical measure such that the multifractal mass exponent τ(q) is related to the partition function and the multifractal spectrum f(α) can be directly determined. The performances of the direct determination approach and the traditional approach of the MF-DMA are compared based on three synthetic multifractal and monofractal measures generated from the one-dimensional p-model, the two-dimensional p-model, and the fractional Brownian motions...
November 2017: Physical Review. E
Alexandre Morin, David Lopes Cardozo, Vijayakumar Chikkadi, Denis Bartolo
Combining experiments and theory, we address the dynamics of self-propelled particles in crowded environments. We first demonstrate that motile colloids cruising at constant speed through random lattices undergo a smooth transition from diffusive to subdiffusive to localized dynamics upon increasing the obstacle density. We then elucidate the nature of these transitions by performing extensive simulations constructed from a detailed analysis of the colloid-obstacle interactions. We evidence that repulsion at a distance and hard-core interactions both contribute to slowing down the long-time diffusion of the colloids...
October 2017: Physical Review. E
Denis S Grebenkov, Dmitry Beliaev
We study the fractal structure of diffusion-limited aggregation (DLA) clusters on a square lattice by extensive numerical simulations (with clusters having up to 10^{8} particles). We observe that DLA clusters undergo strongly anisotropic growth, with the maximal growth rate along the axes. The naive scaling limit of a DLA cluster by its diameter is thus deterministic and one-dimensional. At the same time, on all scales from the particle size to the size of the entire cluster it has a nontrivial box-counting fractal dimension which corresponds to the overall growth rate, which, in turn, is smaller than the growth rate along the axes...
October 2017: Physical Review. E
E G Iashina, E V Velichko, M V Filatov, W G Bouwman, C P Duif, A Brulet, S V Grigoriev
Small-angle neutron scattering (SANS) on nuclei of chicken erythrocytes demonstrates the cubic dependence of the scattering intensity Q^{-3} in the range of momentum transfer Q∈10^{-3}-10^{-2}nm^{-1}. Independent spin-echo SANS measurements give the spin-echo function, which is well described by the exponential law in a range of sizes (3×10^{2})-(3×10^{4}) nm. Both experimental dependences reflect the nature of the structural organization of chromatin in the nucleus of a living cell, which corresponds to the correlation function γ(r)=ln(ξ/r) for r<ξ, where ξ=(3...
July 2017: Physical Review. E
Domenico Lippolis, Li Wang, Yun-Feng Xiao
A deformed dielectric microcavity is used as an experimental platform for the analysis of the statistics of chaotic resonances, in the perspective of testing fractal Weyl laws at optical frequencies. In order to surmount the difficulties that arise from reading strongly overlapping spectra, we exploit the mixed nature of the phase space at hand, and only count the high-Q whispering-gallery modes (WGMs) directly. That enables us to draw statistical information on the more lossy chaotic resonances, coupled to the high-Q regular modes via dynamical tunneling...
July 2017: Physical Review. E
Myriam Peyrounette, Yohan Davit, Michel Quintard, Sylvie Lorthois
Aging or cerebral diseases may induce architectural modifications in human brain microvascular networks, such as capillary rarefaction. Such modifications limit blood and oxygen supply to the cortex, possibly resulting in energy failure and neuronal death. Modelling is key in understanding how these architectural modifications affect blood flow and mass transfers in such complex networks. However, the huge number of vessels in the human brain-tens of billions-prevents any modelling approach with an explicit architectural representation down to the scale of the capillaries...
2018: PloS One
Pasquale Imperatore, Antonio Iodice, Daniele Riccio
A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications...
December 27, 2017: Sensors
Jayajit Das, Elaine Mokrzan, Vinal Lakhani, Lucia Rosas, Joseph A Jurcisek, William C Ray, Lauren O Bakaletz
Biofilms formed in the middle ear by nontypeable Haemophilus influenzae (NTHI) are central to the chronicity, recurrence, and refractive nature of otitis media (OM). However, mechanisms that underlie the emergence of specific NTHI biofilm structures are unclear. We combined computational analysis tools and in silico modeling rooted in statistical physics with confocal imaging of NTHI biofilms formed in vitro during static culture in order to identify mechanisms that give rise to distinguishing morphological features...
December 19, 2017: MBio
J B Wallace, L B Bayu Aji, L Shao, S O Kucheyev
The buildup of radiation damage in ion-irradiated crystals often depends on the spatial distribution of atomic displacements within collision cascades. Although collision cascades have previously been described as fractals, the correlation of their fractal parameters with experimental observations of radiation damage buildup remains elusive. Here, we use a pulsed-ion-beam method to study defect interaction dynamics in 3C-SiC irradiated at 100 °C with ions of different masses. These data, together with results of previous studies of SiC and Si, are analyzed with a model of radiation damage formation which accounts for the fractal nature of collision cascades...
December 14, 2017: Scientific Reports
Anna Marie Sokac
In this issue of Developmental Cell, Goudarzi et al. (2017) examine the membrane source that allows bleb-based cell migration in vivo. Their work reminds us of the fractal nature of cell surfaces and highlights how the unfolding of these convoluted surfaces contributes to physiologically relevant cell shape change in intact organisms.
December 4, 2017: Developmental Cell
Quentin Chevalier, Hind El Hadri, Patrice Petitjean, Martine Bouhnik-Le Coz, Stéphanie Reynaud, Bruno Grassl, Julien Gigault
Cigarette butts (CGB) are equivalent to plastic litter in terms of number of pieces released directly into the environment. Due to their small size and social use, CGB are commonly found in natural systems, and several questions have been raised concerning the contaminants that are released with CGB, including metals, organic species, and nanoparticles. The aim of the present study is to investigate the release of nanoscale particles from CGB by leaching with rainwater. After seven days of passive stirring of both smoked and unsmoked CGB in synthetic rainwater, the solutions were treated and analyzed by specific nano-analytical methods...
November 27, 2017: Chemosphere
Frédéric Dierick, Anne-Laure Nivard, Olivier White, Fabien Buisseret
Locomotion is a natural task that has been assessed for decades and used as a proxy to highlight impairments of various origins. So far, most studies adopted classical linear analyses of spatio-temporal gait parameters. Here, we use more advanced, yet not less practical, non-linear techniques to analyse gait time series of healthy subjects. We aimed at finding more sensitive indexes related to spatio-temporal gait parameters than those previously used, with the hope to better identify abnormal locomotion. We analysed large-scale stride interval time series and mean step width in 34 participants while altering walking direction (forward vs...
2017: PloS One
Karmele Lopez-de-Ipina, Unai Martinez-de-Lizarduy, Pilar M Calvo, Jiri Mekyska, Blanca Beitia, Nora Barroso, Ainara Estanga, Milkel Tainta, Mirian Ecay-Torres
OBJECTIVE: Nowadays proper detection of cognitive impairment has become a challenge for the scientific community. Alzheimer's Disease (AD), the most common cause of dementia, has a high prevalence that is increasing at a fast pace towards epidemic level. In the not-so-distant future this fact could have a dramatic social and economic impact. In this scenario, an early and accurate diagnosis of AD could help to decrease its effects on patients, relatives and society. Over the last decades there have been useful advances not only in classic assessment techniques, but also in novel non-invasive screening methodologies...
2018: Current Alzheimer Research
Di Wu, Tai Min, Jian Zhou, Chen Li, Guobin Ma, Gaotian Lu, Minggang Xia, Zhengbin Gu
In van der Waals epitaxial growth, the substrate plays a particularly important role in the crystal morphology. Here, we synthesized MoS2 by chemical vapour deposition on silicon carbide (SiC). The obtained MoS2 dendritic crystals show six-fold symmetry, which are different from the conventional triangular shapes on SiO2 substrate and from those with three-fold symmetry on SrTiO3 substrate. Interestingly, these MoS2 dendritic crystals on SiC exhibit an average fractal dimension 1.76, which is slightly larger than the classical Diffusion-limited-Aggregation fractal dimension 1...
November 9, 2017: Scientific Reports
Viraj P Modak, Andrew J Amaya, Barbara E Wyslouzil
Whether crystallization starts at the liquid-vapor interface or randomly throughout the bulk has been the subject of intense debate. In our earlier work, we investigated the freezing of supercooled nanodroplets of short chain (C8, C9) n-alkanes formed by homogeneous condensation in a supersonic nozzle. The rate at which the solid appeared suggested freezing starts at the droplet surface well before the rest of the droplet freezes. Experiments were, however, limited to a single condition for each compound and it was not clear whether freezing of n-alkanes always occurs in this two step manner...
November 6, 2017: Physical Chemistry Chemical Physics: PCCP
R Jain, R Pitchumani
Superhydrophobic surfaces have myriad industrial applications, yet their practical utilization has been limited by their poor mechanical durability and longevity. We present a low-cost, facile process to develop superhydrophobic copper-based coatings via an electrodeposition route, that addresses this limitation. Through electrodeposition, a stable, multiscale, cauliflower shaped fractal morphology was obtained and upon modification by stearic acid, the prepared coatings show extreme water repellency with contact angle of 162 ± 2° and roll-off angle of about 3°...
November 17, 2017: Langmuir: the ACS Journal of Surfaces and Colloids
Rosendo Pérez-Isidoro, A D Reyes-Figueroa, J C Ruiz-Suárez
We sought to understand why saline drops produce intriguing patterns when drying in the presence of zwitterionic liposomes. Specifically, we would like to comprehend why the nature of such patterns is hierarchically driven by the Hofmeister series. The liposome suspension is made of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with alkali metal chlorides. A complexity analysis of the patterns gives a fractal dimension around 1.71, which means that the drying process resembles a DLA mechanism. A physicochemical study, including the determination of zeta potential, molecular dynamics simulations, microrheology, and calorimetry, supports the fact that electrostatic interactions among head groups of phospholipids with alkali cations are the driven forces behind the assembling of the observed structures...
September 12, 2017: Colloids and Surfaces. B, Biointerfaces
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"