Read by QxMD icon Read

Myocyte renewal

Saeyoung Park, Yoonyoung Choi, Namhee Jung, Jieun Kim, Seiyoon Oh, Yeonsil Yu, Jung-Hyuck Ahn, Inho Jo, Byung-Ok Choi, Sung-Chul Jung
Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation and are thus a valuable source for the replacement of diseased or damaged organs. Previously, we reported that the tonsils can be an excellent reservoir of MSCs for the regeneration of skeletal muscle (SKM) damage. However, the mechanisms involved in the differentiation from tonsil-derived MSCs (T-MSCs) to myocytes via myoblasts remain unclear. To clarify these mechanisms, we analyzed gene expression profiles of T-MSCs during differentiation into myocytes compared with human skeletal muscle cells (hSKMCs)...
April 2017: International Journal of Molecular Medicine
Chen-Leng Cai, Jeffery D Molkentin
The adult human heart is unable to regenerate after various forms of injury, suggesting that this organ lacks a biologically meaningful endogenous stem cell pool. However, injecting the infarcted area of the adult mammalian heart with exogenously prepared progenitor cells of various types has been reported to create new myocardium by the direct conversion of these progenitor cells into cardiomyocytes. These reports remain controversial because follow-up studies from independent laboratories failed to observe such an effect...
January 20, 2017: Circulation Research
Ivana Zlatanova, Cristina Pinto, Jean-Sébastien Silvestre
The accumulation of immune cells is among the earliest responses that manifest in the cardiac tissue after injury. Both innate and adaptive immunity coordinate distinct and mutually non-exclusive events governing cardiac repair, including elimination of the cellular debris, compensatory growth of the remaining cardiac tissue, activation of resident or circulating precursor cells, quantitative and qualitative modifications of the vascular network, and formation of a fibrotic scar. The present review summarizes the mounting evidence suggesting that the inflammatory response also guides the regenerative process following cardiac damage...
2016: Frontiers in Cardiovascular Medicine
Maurizio Pesce, Elisa Messina, Isotta Chimenti, Antonio Paolo Beltrami
The life-long story of the heart starts concomitantly with primary differentiation events occurring in multipotent progenitors located in the so-called heart tube. This initially tubular structure starts a looping process, which leads to formation of the final four-chambered heart with a primary contribution of geometric and position-associated cell sensing. While this establishes the correct patterning of the final cardiac structure, it also provides feedbacks to fundamental cellular machineries controlling proliferation and differentiation, thus ensuring a coordinated restriction of cell growth and a myocyte terminal differentiation...
January 15, 2017: Stem Cells and Development
Bianca C Bernardo, Julie R McMullen
Exercise-induced cardiac remodeling is typically an adaptive response associated with cardiac myocyte hypertrophy and renewal, increased cardiac myocyte contractility, sarcomeric remodeling, cell survival, metabolic and mitochondrial adaptations, electrical remodeling, and angiogenesis. Initiating stimuli/triggers of cardiac remodeling include increased hemodynamic load, increased sympathetic activity, and the release of hormones and growth factors. Prolonged and strenuous exercise may lead to maladaptive exercise-induced cardiac remodeling including cardiac dysfunction and arrhythmia...
November 2016: Cardiology Clinics
Pengpeng Bi, Feng Yue, Yusuke Sato, Sara Wirbisky, Weiyi Liu, Tizhong Shan, Yefei Wen, Daoguo Zhou, Jennifer Freeman, Shihuan Kuang
Skeletal myogenesis involves sequential activation, proliferation, self-renewal/differentiation and fusion of myogenic stem cells (satellite cells). Notch signaling is known to be essential for the maintenance of satellite cells, but its function in late-stage myogenesis, i.e. post-differentiation myocytes and post-fusion myotubes, is unknown. Using stage-specific Cre alleles, we uncovered distinct roles of Notch1 in mononucleated myocytes and multinucleated myotubes. Specifically, constitutive Notch1 activation dedifferentiates myocytes into Pax7 quiescent satellite cells, leading to severe defects in muscle growth and regeneration, and postnatal lethality...
September 19, 2016: ELife
Shoubao Wang, Lincai Ye, Minghui Li, Jinfen Liu, Chuan Jiang, Haifa Hong, Hongbin Zhu, Yanjun Sun
BACKGROUND: The renewal capacity of neonate human cardiomyocytes provides an opportunity to manipulate endogenous cardiogenic mechanisms for supplementing the loss of cardiomyocytes caused by myocardial infarction or other cardiac diseases. GSK-3β inhibitors have been recently shown to promote cardiomyocyte proliferation in rats and mice, thus may be ideal candidates for inducing human cardiomyocyte proliferation. METHODS: Human cardiomyocytes were isolated from right atrial specimens obtained during routine surgery for ventricle septal defect and cultured with either GSK-3β inhibitor (CHIR-99021) or β-catenin inhibitor (IWR-1)...
December 2016: Journal of Cardiovascular Pharmacology
Christine Chaponnier, Giulio Gabbiani
Higher vertebrates express six different highly conserved actin isoforms that can be classified in three subgroups: 1) sarcomeric actins, α-skeletal (α-SKA) and α-cardiac (α-CAA), 2) smooth muscle actins (SMAs), α-SMA and γ-SMA, and 3) cytoplasmic actins (CYAs), β-CYA and γ-CYA. The variations among isoactins, in each subgroup, are due to 3-4 amino acid differences located in their acetylated N-decapeptide sequence. The first monoclonal antibody (mAb) against an actin isoform (α-SMA) was produced and characterized in our laboratory in 1986 (Skalli  et al...
2016: F1000Research
Sawa Kostin
Our previous studies suggested that an important variable of the progression of contractile dysfunction to terminal heart failure is the imbalance between myocyte cell death and myocyte renewal. For this reason, preventing myocyte cell death and an increasing generation of new myocytes may represent attractive targets in the treatment of human heart failure. Prospective clues to enhance myocardial regeneration are the newly discovered cells termed telocytes, formerly called interstitial Cajal-like cells, which are believed to nurse or guide the endogenous and exogenous stem cells for activation and commitment, but they also act as supporting cells for progenitor cells migration toward injured myocardium...
July 2016: Seminars in Cell & Developmental Biology
Nikki R Kong, Matthew Davis, Li Chai, Astar Winoto, Robert Tjian
Hematopoietic stem cells are capable of self-renewal or differentiation along three main lineages: myeloid, erythroid, and lymphoid. One of the earliest lineage decisions for blood progenitor cells is whether to adopt the lymphoid or myeloid fate. Previous work had shown that myocyte enhancer factor 2C (MEF2C) is indispensable for the lymphoid fate decision, yet the specific mechanism of action remained unclear. Here, we have identified early B cell factor-1 (EBF1) as a co-regulator of gene expression with MEF2C...
February 2016: PLoS Genetics
Adriana Adameova, Eva Goncalvesova, Adrian Szobi, Naranjan S Dhalla
As cardiomyocytes have a limited capability for proliferation, renewal, and repair, the loss of heart cells followed by replacement with fibrous tissue is considered to result in the development of ventricular dysfunction and progression to heart failure (HF). The loss of cardiac myocytes in HF has been traditionally believed to occur mainly due to programmed apoptosis or unregulated necrosis. While extensive research work is being carried out to define the exact significance and contribution of both these cell death modalities in the development of HF, recent knowledge has indicated the existence and importance of a different form of cell death called necroptosis in the failing heart...
March 2016: Heart Failure Reviews
Ailian Du, Shiqian Huang, Xiaonan Zhao, Yun Zhang, Lixun Zhu, Ji Ding, Congfeng Xu
After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor...
January 15, 2016: Journal of Neuroimmunology
Mihai Girlovanu, Sergiu Susman, Olga Soritau, Dan Rus-Ciuca, Carmen Melincovici, Anne-Marie Constantin, Carmen Mihaela Mihu
In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research...
2015: Clujul Medical (1957)
Amanda Finan, Sylvain Richard
The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair...
2015: Frontiers in Cell and Developmental Biology
Marcello Rota, Polina Goichberg, Piero Anversa, Annarosa Leri
Cardiac aging has been confounded by the concept that the heart is a postmitotic organ characterized by a predetermined number of myocytes, which is established at birth and largely preserved throughout life until death of the organ and organism. Based on this premise, the age of cardiac cells should coincide with that of the organism; at any given time, the heart would be composed of a homogeneous population of myocytes of identical age. The discovery that stem cells reside in the heart and generate cardiac cell lineages has imposed a reconsideration of the mechanisms implicated in the manifestations of the aging myopathy...
October 2015: Comprehensive Physiology
Yu-Sian Ho, Wan-Hsuan Tsai, Fen-Chiung Lin, Wei-Pang Huang, Lung-Chun Lin, Sean M Wu, Yu-Ru Liu, Wen-Pin Chen
Heart failure due to myocardial infarction (MI) is a major cause of morbidity and mortality in the world. We found previously that A83-01, a TGFβRI inhibitor, could facilitate cardiac repair in post-MI mice and induce the expansion of a Nkx2.5 + cardiomyoblast population. This study aimed to investigate the key autocrine/paracrine factors regulated by A83-01 in the injured heart and the mechanism of cardioprotection by this molecule. Using a previously described transgenic Nkx2.5 enhancer-green fluorescent protein (GFP) reporter mice, we isolated cardiac progenitor cells (CPC) including Nkx2...
February 2016: Stem Cells
Yiqiang Zhang, John Mignone, W Robb MacLellan
After decades of believing the heart loses the ability to regenerate soon after birth, numerous studies are now reporting that the adult heart may indeed be capable of regeneration, although the magnitude of new cardiac myocyte formation varies greatly. While this debate has energized the field of cardiac regeneration and led to a dramatic increase in our understanding of cardiac growth and repair, it has left much confusion in the field as to the prospects of regenerating the heart. Studies applying modern techniques of genetic lineage tracing and carbon-14 dating have begun to establish limits on the amount of endogenous regeneration after cardiac injury, but the underlying cellular mechanisms of this regeneration remained unclear...
October 2015: Physiological Reviews
Melissa A Wasilewski, Valerie D Myers, Fabio A Recchia, Arthur M Feldman, Douglas G Tilley
No abstract text is available yet for this article.
March 2016: Cellular Signalling
Mozhdeh Mohammadian, Elham Abasi, Abolfazl Akbarzadeh
Mesenchymal stem cells (MSCs) are multipotent stromal cells that exist in bone marrow, fat, and so many other tissues, and can differentiate into a variety of cell types including osteoblasts, chondrocytes, and adipocytes, as well as myocytes and neurons. Moreover, they have great capacity for self-renewal while maintaining their multipotency. Their capacity for proliferation and differentiation, in addition to their immunomodulatory activity, makes them very promising candidates for cell-based regenerative medicine...
August 2016: Artificial Cells, Nanomedicine, and Biotechnology
Xuewu Peng, Tongxing Song, Xiaoming Hu, Yuanfei Zhou, Hongkui Wei, Jian Peng, Siwen Jiang
It has been proved that terminally differentiated mature adipocytes possess abilities to dedifferentiate into fibroblast-like progeny cells with self-renewal and multiple differentiation, termed dedifferentiated fat (DFAT) cells. However, the biological properties of DFAT cells during long-term culture in vitro have not been elucidated. Here, we obtained fibroblast-like morphology of porcine DFAT cells by ceiling culture. During the dedifferentiation process, round mature adipocytes with single large lipid droplets changed into spindle-shaped cells accompanied by the adipogenic markers PPARγ, aP2, LPL, and Adiponectin significant downregulation...
2015: BioMed Research International
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"