Read by QxMD icon Read

stand thinning

Bingya Hou, Lang Shen, Haotian Shi, Rehan Kapadia, Stephen B Cronin
We report measurements of photocatalytic water splitting using Au films with and without TiO2 coatings. In these structures, a thin (3-10 nm) film of TiO2 is deposited using atomic layer deposition (ALD) on top of a 100 nm thick Au film. We utilize an AC lock-in technique, which enables us to detect the relatively small photocurrents (∼μA) produced by the short-lived hot electrons that are photoexcited in the metal. Under illumination, the bare Au film produces a small AC photocurrent (<1 μA) for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) due to hot electrons and hot holes, respectively, that are photoexcited in the Au film...
January 11, 2017: Physical Chemistry Chemical Physics: PCCP
Yong Li, Daixin Ye, Bin Shi, Wen Liu, Rui Guo, Haijuan Pei, Jingying Xie
To solve the barriers of poor rate capability and inferior cycling stability for the MnO2 anode in lithium ion batteries, we present a highly flexible membrane anode employing two-dimensional (2D) reduced graphene oxide sheets (rGO) and a three-dimensional (3D) MnO2-reduced graphene oxide-carbon nanotube nanocomposite (MGC) by a vacuum filtration and thermal annealing approach. All the components in the 2D/3D thin film anode have a synergistic effect on the improved performance. The initial discharge specific capacity of the electrode with the MnO2 content of 56 wt% was 1656...
January 9, 2017: Physical Chemistry Chemical Physics: PCCP
Jingwen Sun, Bernhard V K J Schmidt, Xin Wang, Menny Shalom
Here we report a facile synthesis of carbon nitride-based hydrogels with adjustable shapes, ranging from cylinder to tube and thin sheet, by photo-polymerization process in confined templates. The fabricated hydrogel shows enhanced mechanical properties compared to the reference gel without carbon nitride incorporation, good adsorption capacity and promising photocatalytic activity toward hydrogen production. Meanwhile, the hydrogel also exhibits selective pollutants adsorption properties which could be attributed to the negative-charged carbon nitride as well as relatively high stability alongside enhanced light harvesting...
January 5, 2017: ACS Applied Materials & Interfaces
Shaozhuan Huang, Lin Zhang, Xueyi Lu, Lifeng Liu, Lixiang Liu, Xiaolei Sun, Yin Yin, Steffen Oswald, Zhaoyong Zou, Fei Ding, Oliver G Schmidt
Nanostructured TiO2 of different polymorphs, mostly prepared by hydro/solvothermal methods, have been extensively studied for more than a decade as anode materials in lithium ion batteries. Enormous efforts have been devoted to improving the electrical conductivity and lithium ion diffusivity in chemically synthesized TiO2 nanostructures. In this work we demonstrate that 3D Ti(3+)-self-doped TiO2 (TiO2-δ) nanomembranes, which are prepared by physical vapor deposition combined with strain-released rolled-up technology, have a great potential to address several of the long-standing challenges associated with TiO2 anodes...
December 30, 2016: ACS Nano
Suyong Jung, Nojoon Myoung, Jaesung Park, Tae Young Jeong, Hakseong Kim, Kenji Watanabe, Takashi Taniguchi, Dong Han Ha, Chanyong Hwang, Hee Chul Park
The chemical and mechanical stability of hexagonal boron nitride (h-BN) thin films and their compatibility with other free-standing two-dimensional (2D) crystals to form van der Waals heterostructures make the h-BN-2D tunnel junction an intriguing experimental platform not only for the engineering of specific device functionalities but also for the promotion of quantum measurement capabilities. Here, we exploit the h-BN-graphene tunnel junction to directly probe the electronic structures of single-layer and bilayer graphene in the presence and the absence of external magnetic fields with unprecedented high signal-to-noise ratios...
December 27, 2016: Nano Letters
Lu Lyu, Dongmei Niu, Haipeng Xie, Yuan Zhao, Ningtong Cao, Hong Zhang, Yuhe Zhang, Peng Liu, Yongli Gao
Combining ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS), atomic force microscopy (AFM) and small angle X-ray diffraction (SAXD) measurements, we perform a systematic investigation on the correlations of the electronic structure, film growth and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on silicon oxide (SiO2). AFM analysis reveals a phase transition of disorderedly oriented molecules in clusters in thinner films to highly ordered standing-up molecules in islands in thicker films...
January 4, 2017: Physical Chemistry Chemical Physics: PCCP
Ren-Shan Li, Qing-Peng Yang, Wei-Dong Zhang, Wen-Hui Zheng, Yong-Gang Chi, Ming Xu, Yun-Ting Fang, Arthur Gessler, Mai-He Li, Si-Long Wang
Canopies in evergreen coniferous plantations often consist of various-aged needles. However, the effect of needle age on the photosynthetic responses to thinning remains ambiguous. Photosynthetic responses of different-aged needles to thinning were investigated in a Chinese fir (Cunninghamia lanceolata) plantation. A dual isotope approach [simultaneous measurements of stable carbon (δ(13)C) and oxygen (δ(18)O) isotopes] was employed to distinguish between biochemical and stomatal limitations to photosynthesis...
December 13, 2016: Science of the Total Environment
Jingling Yang, Qili Wu, Xianfeng Yang, Shiman He, Javid Khan, Yuying Meng, Xiuming Zhu, Shengfu Tong, Mingmei Wu
Transition metal oxides caused much attention owing to the scientific interests and potential applications in energy storage systems. In this study, a free-standing three-dimensional (3D) chestnut-like TiO2@α-Fe2O3 core-shell nanostructure (TFN) is rationally synthesized and utilized as a carbon-free electrode for lithium-ion batteries (LIBs). Two new interfaces between anatase TiO2 and α-Fe2O3 are observed and supposed to provide synergistic effect. The TiO2 microsphere framework significantly improves the mechanical stability, while the α-Fe2O3 provides large capacity...
December 29, 2016: ACS Applied Materials & Interfaces
Ulrich Welling, Marcus Müller
We study the kinetics of alignment and registration of block copolymers in an inhomogeneous electric field by computer simulations of a soft, coarse-grained model. The two blocks of the symmetric diblock copolymers are characterized by different dielectric constants. First, we demonstrate that a combination of graphoepitaxy and a homogeneous electric field extends the maximal distance between the topographical guiding patterns that result in defect-free ordering compared to graphoepitaxy alone. In a second study, the electric field in the thin block copolymer film is fabricated by spatially structured electrodes on an isolating substrate arranged in a one-dimensional periodic array; no additional topographical guiding patterns are applied...
January 4, 2017: Soft Matter
Yuki Yoshimura, Yui Yagisawa, Ko Okumura
Meandering instability is familiar to everyone through river meandering or small rivulets of rain flowing down a windshield. However, its physical understanding is still premature, although it could inspire researchers in various fields, such as nonlinear science, fluid mechanics and geophysics, to resolve their long-standing problems. Here, we perform a small-scale experiment in which air flow is created in a thin granular bed to successfully find a meandering regime, together with other remarkable fluidized regimes, such as a turbulent regime...
December 12, 2016: Scientific Reports
Y M Nuwan D Y Bandara, Buddini Iroshika Karawdeniya, Julie C Whelan, Lucas D S Ginsberg, Jason R Dwyer
Silicon nitride fabricated by low-pressure chemical vapor deposition (LPCVD) to be silicon-rich (SiNx), is a ubiquitous insulating thin film in the microelectronics industry, and an exceptional structural material for nanofabrication. Free-standing <100 nm thick SiNx membranes are especially compelling, particularly when used to deliver forefront molecular sensing capabilities in nanofluidic devices. We developed an accessible, gentle, and solution-based photodirected surface metallization approach well-suited to forming patterned metal films as integral structural and functional features in thin-membrane-based SiNx devices-for use as electrodes or surface chemical functionalization platforms, for example-augmenting existing device capabilities and properties for a wide range of applications...
December 28, 2016: ACS Applied Materials & Interfaces
A Alec Talin, Dmitry Ruzmetov, Andrei Kolmakov, Kim McKelvey, Nicholas Ware, Farid El Gabaly, Bruce Dunn, Henry S White
Demonstration of three-dimensional all-solid-state Li-ion batteries (3D SSLIBs) has been a long-standing goal for numerous researchers in the battery community interested in developing high power and high areal energy density storage solutions for a variety of applications. Ideally, the 3D geometry maximizes the volume of active material per unit area, while keeping its thickness small to allow for fast Li diffusion. In this paper, we describe experimental testing and simulation of 3D SSLIBs fabricated using materials and thin-film deposition methods compatible with semiconductor device processing...
November 30, 2016: ACS Applied Materials & Interfaces
Yang Yu, Patrick W K Fong, Shifeng Wang, Charles Surya
High quality wafer-scale free-standing WS2 grown by van der Waals rheotaxy (vdWR) using Ni as a texture promoting layer is reported. The microstructure of vdWR grown WS2 was significantly modified from mixture of crystallites with their c-axes both parallel to (type I) and perpendicular to (type II) the substrate to large type II crystallites. Wafer-scale transfer of vdWR grown WS2 onto different substrates by an etching-free technique was demonstrated for the first time that utilized the hydrophobic property of WS2 and hydrophilic property of sapphire...
November 29, 2016: Scientific Reports
Zhen Chen, Yi-Tsu Chan, Daigo Miyajima, Takashi Kajitani, Atsuko Kosaka, Takanori Fukushima, Jose M Lobez, Takuzo Aida
How to orient polymers homeotropically in thin films has been a long-standing issue in polymer science because polymers intrinsically prefer to lie down. Here we provide a design principle for polymers that are processable into a 2D homeotropic order. The key to this achievement was a recognition that cylindrical polymers can be designed to possess oppositely directed local dipoles in their cross-section, which possibly force polymers to tightly connect bilaterally, affording a 2D rectangular assembly. With a physical assistance of the surface grooves on Teflon sheets that sandwich polymer samples, homeotropic ordering is likely nucleated and gradually propagates upon hot-pressing towards the interior of the film...
November 29, 2016: Nature Communications
Kathryn R Hesketh, James Fagg, Graciela Muniz-Terrera, Helen Bedford, Catherine Law, Steven Hope
OBJECTIVES: To identify patterns of co-occurrence and clustering of 6 common adverse health conditions in 11-year-old children and explore differences by sociodemographic factors. DESIGN: Nationally representative prospective cohort study. SETTING: Children born in the UK between 2000 and 2002. PARTICIPANTS: 11 399 11-year-old singleton children for whom data on all 6 health conditions and sociodemographic information were available (complete cases)...
November 22, 2016: BMJ Open
Chenghuan Jiang, Rongqing Zhou, Zhaohui Peng, Jinfu Zhu, Qian Chen
The fabrication of a transition metal (TM) atomically thin layer with robust ferromagnetic ordering (FM) for the continuous miniaturization of spintronic and quantum computing devices is desired. Through first-principles calculations, we establish that Ru atoms can be epitaxially aligned on MoS2 monolayers, thus forming an atomically thin layer of 2D Ru/MoS2 heterostructure with high structural stability. The Ru layer possesses a robust FM (more than 300 K) and an out-of-plane easy axis with the magnetic anisotropy energy (MAE) of ∼3...
November 30, 2016: Physical Chemistry Chemical Physics: PCCP
M Abdul Khayum, Sharath Kandambeth, Shouvik Mitra, Sanoop B Nair, Anuja Das, Samadhan S Nagane, Rabibrata Mukherjee, Rahul Banerjee
Covalent organic nanosheets (CONs) are a new class of porous thin two-dimensional (2D) nanostructures that can be easily designed and functionalized and could be useful for separation applications. Poor dispersion, layer restacking, and difficult postsynthetic modifications are the major hurdles that need to be overcome to fabricate scalable CON thin films. Herein, we present a unique approach for the chemical exfoliation of an anthracene-based covalent organic framework (COF) to N-hexylmaleimide-functionalized CONs, to yield centimeter-sized free-standing thin films through layer-by-layer CON assembly at the air-water interface...
December 12, 2016: Angewandte Chemie
Meiyu Gai, Johannes Frueh, Valeriya L Kudryavtseva, Rui Mao, Maxim V Kiryukhin, Gleb B Sukhorukov
Polyelectrolyte complexes (PEC) are formed by mixing the solutions of oppositely charged polyelectrolytes, which were hitherto deemed "impossible" to process, since they are infusible and brittle when dry. Here, we describe the process of fabricating free-standing micro-patterned PEC films containing array of hollow or filled microchambers by one-step casting with small applied pressure and a PDMS mould. These structures are compared with polyelectrolyte multilayers (PEM) thin films having array of hollow microchambers produced from a layer-by-layer self-assembly of the same polyelectrolytes on the same PDMS moulds...
November 10, 2016: Scientific Reports
Jixun Xie, Xue Han, Haipeng Ji, Juanjuan Wang, Jingxin Zhao, Conghua Lu
Self-supported conducting polymer films with controlled microarchitectures are highly attractive from fundamental and applied points of view. Here a versatile strategy is demonstrated to fabricate thin free-standing crack-free polyaniline (PANI)-based films with stable wrinkling patterns. It is based on oxidization polymerization of pyrrole inside a pre-wrinkled PANI film, in which the wrinkled PANI film is used both as a template and oxidizing agent for the first time. The subsequently grown polypyrrole (PPy) and the formation of interpenetrated PANI/PPy networks play a decisive role in enhancing the film integrity and the stability of wrinkles...
November 9, 2016: Scientific Reports
Sven Zea, Mateo López-Victoria
Several groups of sponges are able to excavate galleries and tunnels in calcareous substrata such as limestone rock, shells, calcareous algae and coral skeletons. Within the genus Cliona, some species share the common traits of being brown to olive-green in color, and harboring photosynthetic, unicellular dinoflagellates (zooxanthellae). These Cliona spp. have been grouped as the Cliona viridis species complex. Several species of this complex completely encrust the excavated substratum with a thin veneer of tissue and, when colonizing dead exposed parts of live coral colonies, they are able to undermine or overgrow and thus kill live coral tissue as they advance predominantly laterally...
October 26, 2016: Zootaxa
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"