Read by QxMD icon Read

Aspergillus nidulans

Richard J Bennett, B Gillian Turgeon
This article provides an overview of sexual reproduction in the ascomycetes, a phylum of fungi that is named after the specialized sacs or "asci" that hold the sexual spores. They have therefore also been referred to as the Sac Fungi due to these characteristic structures that typically contain four to eight ascospores. Ascomycetes are morphologically diverse and include single-celled yeasts, filamentous fungi, and more complex cup fungi. The sexual cycles of many species, including those of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and the filamentous saprobes Neurospora crassa, Aspergillus nidulans, and Podospora anserina, have been examined in depth...
October 2016: Microbiology Spectrum
Z Schultzhaus, T B Johnson, B D Shaw
Cell growth necessitates extensive membrane remodeling events including vesicle fusion or fission, processes that are regulated by coat proteins. The hyphal cells of filamentous fungi concentrate both exocytosis and endocytosis at the apex. This investigation focuses on clathrin in Aspergillus nidulans, with the aim of understanding its role in membrane remodeling in growing hyphae. We examined clathrin heavy chain (ClaH-GFP) which localized to three distinct subcellular structures: late Golgi (trans-Golgi equivalents of filamentous fungi), which are concentrated just behind the hyphal tip but are intermittently present throughout all hyphal cells; the region of concentrated endocytosis just behind the hyphal apex (the "endocytic collar"); and small, rapidly moving puncta that were seen trafficking long distances in nearly all hyphal compartments...
October 14, 2016: Molecular Microbiology
Georgia Sioupouli, George Lambrinidis, Emmanuel Mikros, Sotiris Amillis, George Diallinas
NCS1 proteins are H(+) or Na(+) symporters responsible for the uptake of purines, pyrimidines or related metabolites in bacteria, fungi and some plants. Fungal NCS1 are classified into two evolutionary and structurally distinct subfamilies, known as Fur- and Fcy-like transporters. These subfamilies have expanded and functionally diversified by gene duplications. The Fur subfamily of the model fungus Aspergillus nidulans includes both major and cryptic transporters specific for uracil, 5-fluorouracil, allantoin or/and uric acid...
October 14, 2016: Molecular Microbiology
Nikolaos Lougiakis, Efthymios-Spyridon Gavriil, Markelos Kairis, Georgia Sioupouli, George Lambrinidis, Dimitra Benaki, Emilia Krypotou, Emmanuel Mikros, Panagiotis Marakos, Nicole Pouli, George Diallinas
In the course of our study on fungal purine transporters, a number of new 3-deazapurine analogues have been rationally designed, based on the interaction of purine substrates with the Aspergillus nidulans FcyB carrier, and synthesized following an effective synthetic procedure. Certain derivatives have been found to specifically inhibit FcyB-mediated [(3)H]-adenine uptake. Molecular simulations have been performed, suggesting that all active compounds interact with FcyB through the formation of hydrogen bonds with Asn163, while the insertion of hydrophobic fragments at position 9 and N6 of 3-deazaadenine enhanced the inhibition...
September 22, 2016: Bioorganic & Medicinal Chemistry
Thaila Fernanda Dos Reis, Pollyne Borborema Almeida de Lima, Nádia Skorupa Parachin, Fabiana Bombonato Mingossi, Juliana Velasco de Castro Oliveira, Laure Nicolas Annick Ries, Gustavo Henrique Goldman
BACKGROUND: The conversion of lignocellulosic biomass to biofuels (second-generation biofuel production) is an environmentally friendlier alternative to petroleum-based energy sources. Enzymatic deconstruction of lignocellulose, catalyzed by filamentous fungi such as Aspergillus nidulans, releases a mixture of mono- and polysaccharides, including hexose (glucose) and pentose (xylose) sugars, cellodextrins (cellobiose), and xylooligosaccharides (xylobiose). These sugars can subsequently be fermented by yeast cells to ethanol...
2016: Biotechnology for Biofuels
A P Berti, G F Palioto, C L M S C Rocha
Medicinal plants such as Aloe arborescens Miller and Aloe barbadensis Miller are used by the general population to treat various diseases. Therefore, the aim of this study was to evaluate the antimutagenicity of these two species using a methG1 system in Aspergillus nidulans and the comet assay in rats. The animals were treated with the plants at concentrations of 360 and 720 mg/kg body weight (1 and 2, respectively) by gavage for 14 days, followed by the administration of etoposide on treatment day 8. Blood samples were prepared for analysis of DNA damage...
September 2, 2016: Genetics and Molecular Research: GMR
Luke M Noble, Linda M Holland, Alisha J McLachlan, Alex Andrianopoulos
Ontogenetic phases separating growth from reproduction are a common feature of cellular life. Long recognized for flowering plants and animals, early literature suggests this life-history component may also be prevalent among multicellular fungi. We establish the basis of developmental competence - the capacity to respond to induction of asexual development -in the filamentous saprotroph Aspergillus nidulans, describing environmental influences, including genotype-by-environment interactions among precocious mutants, gene expression associated with wild-type and precocious competence acquisition, and the genetics of competence timing...
September 26, 2016: Genetics
Mahesh Chemudupati, Aysha H Osmani, Stephen A Osmani
During Aspergillus nidulans mitosis peripheral nuclear pore complex (NPC) proteins (Nups) disperse from the core NPC structure. Unexpectedly, one predicted peripheral Nup, Gle1, remains at the mitotic NE via an unknown mechanism. Gle1 affinity purification identified MtgA ( M: itotic T: ether for G: le1), which tethers Gle1 to the NE during mitosis, but not during interphase when Gle1 is at NPCs. MtgA is the ortholog of the Schizosaccharomyces pombe telomere-anchoring inner nuclear membrane protein Bqt4. Like Bqt4, MtgA has meiotic roles but is functionally distinct from Bqt4 as MtgA is not required for tethering telomeres to the NE...
September 14, 2016: Molecular Biology of the Cell
Ágota Jónás, Erzsébet Fekete, Zoltán Németh, Michel Flipphi, Levente Karaffa
In this study, we analyzed the expression of the structural genes encoding the five enzymes comprising the Leloir pathway of D-galactose catabolism in the industrial cell factory Penicillium chrysogenum on various carbon sources. The genome of P. chrysogenum contains a putative galactokinase gene at the annotated locus Pc13g10140, the product of which shows strong structural similarity to yeast galactokinase that was expressed on lactose and D-galactose only. The expression profile of the galactose-1-phosphate uridylyl transferase gene at annotated locus Pc15g00140 was essentially similar to that of galactokinase...
September 2016: Acta Biologica Hungarica
Peter M Dracatos, Jennifer Payne, Antonio Di Pietro, Marilyn A Anderson, Kim M Plummer
Nicotiana alata defensins 1 and 2 (NaD1 and NaD2) are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An) O-mannosyltransferase (pmt) knockout (KO) mutants (An∆pmtA, An∆pmtB, and An∆pmtC). An∆pmtA was resistant to both defensins, while An∆pmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains...
2016: International Journal of Molecular Sciences
Md Ashiqul Alam, Niyom Kamlangdee, Joan M Kelly
Ubiquitination/deubiquitination pathways are now recognized as key components of gene regulatory mechanisms in eukaryotes. The major transcriptional repressor for carbon catabolite repression in Aspergillus nidulans is CreA, and mutational analysis led to the suggestion that a regulatory ubiquitination/deubiquitination pathway is involved. A key unanswered question is if and how this pathway, comprising CreB (deubiquitinating enzyme) and HulA (ubiquitin ligase) and other proteins, is involved in the regulatory mechanism...
September 2, 2016: Current Genetics
Nuo Li, Emi Kunitake, Miki Aoyama, Masahiro Ogawa, Kyoko Kanamaru, Makoto Kimura, Yasuji Koyama, Tetsuo Kobayashi
Fungal cellulolytic and hemicellulolytic enzymes are promising tools for industrial hydrolysis of cellulosic biomass; however, the regulatory network underlying their production is not well understood. The recent discovery of the transcriptional activators ClrB and McmA in Aspergillus nidulans implied a novel regulatory mechanism driven by their interaction, experimental evidence for which was obtained from transcriptional and DNA-binding analyses in this study. We found that ClrB was essential for induced expression of all the genes examined in this study, while McmA dependency of their expression was gene-dependent...
September 2, 2016: Molecular Microbiology
Laura Nekiunaite, Magnus Ø Arntzen, Birte Svensson, Gustav Vaaje-Kolstad, Maher Abou Hachem
BACKGROUND: Starch is the second most abundant plant-derived biomass and a major feedstock in non-food industrial applications and first generation biofuel production. In contrast to lignocellulose, detailed insight into fungal degradation of starch is currently lacking. This study explores the secretomes of Aspergillus nidulans grown on cereal starches from wheat and high-amylose (HA) maize, as well as legume starch from pea for 5 days. RESULTS: Aspergillus nidulans grew efficiently on cereal starches, whereas growth on pea starch was poor...
2016: Biotechnology for Biofuels
Zhenzhong Yu, Olivier Armant, Reinhard Fischer
Stress-sensing in fungi depends on a signalling cascade comprised of a two-component phosphorylation relay plus a subsequent MAP kinase cascade to trigger gene expression. Besides osmotic or oxidative stress, fungi sense many other environmental factors, one of which is light(1,2). Light controls morphogenetic pathways but also the production of secondary metabolites such as penicillin. Here we show that phytochrome-dependent light signalling in Aspergillus nidulans involves the stress-sensing and osmosensing signalling pathway...
2016: Nature Microbiology
Oleksandra Fokina, Alex Fenchel, Lex Winandy, Reinhard Fischer
: Fungal hydrophobins are small amphiphilic proteins that can be used for coatings on hydrophilic and hydrophobic surfaces. Through the formation of monolayers, they change the hydrophobicity of a given surface. Especially, the class I hydrophobins are interesting for biotechnology, because their layers are stable at high temperatures and can only be removed with strong solvents. These proteins self-assemble into monolayers under physiological conditions and undergo conformational changes that stabilize the layer structure...
November 1, 2016: Applied and Environmental Microbiology
Sijmen Schoustra, Sungmin Hwang, Joachim Krug, J Arjan G M de Visser
Adaptive evolution ultimately is fuelled by mutations generating novel genetic variation. Non-additivity of fitness effects of mutations (called epistasis) may affect the dynamics and repeatability of adaptation. However, understanding the importance and implications of epistasis is hampered by the observation of substantial variation in patterns of epistasis across empirical studies. Interestingly, some recent studies report increasingly smaller benefits of beneficial mutations once genotypes become better adapted (called diminishing-returns epistasis) in unicellular microbes and single genes...
August 31, 2016: Proceedings. Biological Sciences
Stela Virgilio, Fernanda Barbosa Cupertino, Natália Elisa Bernardes, Fernanda Zanolli Freitas, Agnes Alessandra Sekijima Takeda, Marcos Roberto de Mattos Fontes, Maria Célia Bertolini
Environmental pH induces a stress response triggering a signaling pathway whose components have been identified and characterized in several fungi. Neurospora crassa shares all six components of the Aspergillus nidulans pH signaling pathway, and we investigate here their regulation during an alkaline pH stress response. We show that the N. crassa pal mutant strains, with the exception of Δpal-9, which is the A. nidulans palI homolog, exhibit low conidiation and are unable to grow at alkaline pH. Moreover, they accumulate the pigment melanin, most likely via regulation of the tyrosinase gene by the pH signaling components...
2016: PloS One
Maria Lund Nielsen, Thomas Isbrandt, Lene Maj Petersen, Uffe Hasbro Mortensen, Mikael Rørdam Andersen, Jakob Blæsbjerg Hoof, Thomas Ostenfeld Larsen
Polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) each give rise to a vast array of complex bioactive molecules with further complexity added by the existence of natural PKS-NRPS fusions. Rational genetic engineering for the production of natural product derivatives is desirable for the purpose of incorporating new functionalities into pre-existing molecules, or for optimization of known bioactivities. We sought to expand the range of natural product diversity by combining modules of PKS-NRPS hybrids from different hosts, hereby producing novel synthetic natural products...
2016: PloS One
Agnieszka Gacek-Matthews, Harald Berger, Takahiko Sasaki, Kathrin Wittstein, Clemens Gruber, Zachary A Lewis, Joseph Strauss
Histone posttranslational modifications (HPTMs) are involved in chromatin-based regulation of fungal secondary metabolite biosynthesis (SMB) in which the corresponding genes-usually physically linked in co-regulated clusters-are silenced under optimal physiological conditions (nutrient-rich) but are activated when nutrients are limiting. The exact molecular mechanisms by which HPTMs influence silencing and activation, however, are still to be better understood. Here we show by a combined approach of quantitative mass spectrometry (LC-MS/MS), genome-wide chromatin immunoprecipitation (ChIP-seq) and transcriptional network analysis (RNA-seq) that the core regions of silent A...
August 2016: PLoS Genetics
Shinji Kishimoto, Michio Sato, Yuta Tsunematsu, Kenji Watanabe
Varieties of alkaloids are known to be produced by various organisms, including bacteria, fungi and plants, as secondary metabolites that exhibit useful bioactivities. However, understanding of how those metabolites are biosynthesized still remains limited, because most of these compounds are isolated from plants and at a trace level of production. In this review, we focus on recent efforts in identifying the genes responsible for the biosynthesis of those nitrogen-containing natural products and elucidating the mechanisms involved in the biosynthetic processes...
2016: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"