keyword
MENU ▼
Read by QxMD icon Read
search

ENDS

keyword
https://www.readbyqxmd.com/read/28814052/grasp-specific-and-user-friendly-interface-design-for-myoelectric-hand-prostheses
#1
Alireza Mohammadi, Jim Lavranos, Rob Howe, Peter Choong, Denny Oetomo
This paper presents the design and characterisation of a hand prosthesis and its user interface, focusing on performing the most commonly used grasps in activities of daily living (ADLs). Since the operation of a multi-articulated powered hand prosthesis is difficult to learn and master, there is a significant rate of abandonment by amputees in preference for simpler devices. In choosing so, amputees chose to live with fewer features in their prosthesis that would more reliably perform the basic operations...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814044/a-survey-of-stakeholder-perspectives-on-a-proposed-combined-exoskeleton-wheelchair-technology
#2
Tim Bhatnagar, W Ben Mortensen, Johanne Mattie, Jamie Wolff, Claire Parker, Jaimie Borisoff
BACKGROUND: Exoskeleton technology has potential benefits for wheelchair users' health and mobility. However, there are practical barriers to their everyday use as a mobility device. In particular, challenges related to travelling longer distances and transitioning between using a wheelchair and exoskeleton walking may present significant deterrents to regular exoskeleton use. In an effort to remove these barriers, a combined exoskeleton-wheelchair concept ('COMBO') has been proposed, which aims to achieve the benefits of both these mobility technologies...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814039/evaluating-wearable-multimodal-sensor-insoles-for-motion-pattern-measurements-in-stroke-rehabilitation-a-pilot-study
#3
V David, M Forjan, J Martinek, S Kotzian, H Jagos, D Rafolt
The majority of stroke patients experience deficits in motoric functions, especially in gait and mobility. They need rehabilitation to regain walking independence, which is a major goal of rehabilitation after stroke. To document and assess the rehabilitation progress, instrumented motion analysis and clinical assessments are commonly used. In a clinical pilot study the applicability of an instrumented insole system in stroke rehabilitation is evaluated. Motion parameter of 35 stroke patients were gathered with the system while completing 90 s level walking and Timed Up & Go test at the beginning and end of four weeks inpatient rehabilitation...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814035/decoding-of-individual-finger-movements-from-surface-emg-signals-using-vector-autoregressive-hierarchical-hidden-markov-models-varhhmm
#4
Nebojsa Malesevic, Dimitrije Markovic, Gunter Kanitz, Marco Controzzi, Christian Cipriani, Christian Antfolk
In this paper we present a novel method for predicting individual fingers movements from surface electromyography (EMG). The method is intended for real-time dexterous control of a multifunctional prosthetic hand device. The EMG data was recorded using 16 single-ended channels positioned on the forearm of healthy participants. Synchronously with the EMG recording, the subjects performed consecutive finger movements based on the visual cues. Our algorithm could be described in following steps: extracting mean average value (MAV) of the EMG to be used as the feature for classification, piece-wise linear modeling of EMG feature dynamics, implementation of hierarchical hidden Markov models (HHMM) to capture transitions between linear models, and implementation of Bayesian inference as the classifier...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814022/estimating-anatomical-wrist-joint-motion-with-a-robotic-exoskeleton
#5
Chad G Rose, Claudia K Kann, Ashish D Deshpande, Marcia K O'Malley
Robotic exoskeletons can provide the high intensity, long duration targeted therapeutic interventions required for regaining motor function lost as a result of neurological injury. Quantitative measurements by exoskeletons have been proposed as measures of rehabilitative outcomes. Exoskeletons, in contrast to end effector designs, have the potential to provide a direct mapping between human and robot joints. This mapping rests on the assumption that anatomical axes and robot axes are aligned well, and that movement within the exoskeleton is negligible...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28814015/postoperative-healing-patterns-in-elbow-using-electromyography-towards-the-development-of-a-wearable-mechatronic-elbow-brace
#6
Raneem Haddara, Yue Zhou, Shrikant Chinchalkar, Ana Luisa Trejos
Musculoskeletal (MSK) conditions are the most common cause of severe long-term pain and physical disability. Current postoperative treatment for patients requires them to follow a long-term physiotherapy program customized for each specific case; however, this process can be complex, time-consuming and without the right therapy it may end up being ineffective. A possible solution involves the development of wearable mechatronic elbow braces that use electromyography (EMG) to identify patient intent. However, EMG characteristics change based on the health of the individual and therefore require further investigation...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813990/a-learning-based-agent-for-home-neurorehabilitation
#7
Andreas Lydakis, Yuanliang Meng, Christopher Munroe, Yi-Ning Wu, Momotaz Begum
This paper presents the iterative development of an artificially intelligent system to promote home-based neurorehabilitation. Although proper, structured practice of rehabilitation exercises at home is the key to successful recovery of motor functions, there is no home-program out there which can monitor a patient's exercise-related activities and provide corrective feedback in real time. To this end, we designed a Learning from Demonstration (LfD) based home-rehabilitation framework that combines advanced robot learning algorithms with commercially available wearable technologies...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813969/prediction-of-user-preference-over-shared-control-paradigms-for-a-robotic-wheelchair
#8
Ahmetcan Erdogan, Brenna D Argall
The design of intelligent powered wheelchairs has traditionally focused heavily on providing effective and efficient navigation assistance. Significantly less attention has been given to the end-user's preference between different assistance paradigms. It is possible to include these subjective evaluations in the design process, for example by soliciting feedback in post-experiment questionnaires. However, constantly querying the user for feedback during real-world operation is not practical. In this paper, we present a model that correlates objective performance metrics and subjective evaluations of autonomous wheelchair control paradigms...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813968/changes-in-neuromuscular-activity-during-motor-training-with-a-body-machine-interface-after-spinal-cord-injury
#9
C Pierella, A De Luca, E Tasso, F Cervetto, S Gamba, L Losio, E Quinland, A Venegoni, S Mandraccia, I Muller, A Massone, F A Mussa-Ivaldi, M Casadio
Body machine interfaces (BMIs) are used by people with severe motor disabilities to control external devices, but they also offer the opportunity to focus on rehabilitative goals. In this study we introduced in a clinical setting a BMI that was integrated by the therapists in the rehabilitative treatments of 2 spinal cord injured (SCI) subjects for 5 weeks. The BMI mapped the user's residual upper body mobility onto the two coordinates of a cursor on a screen. By controlling the cursor, the user engaged in playing computer games...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813960/towards-free-3d-end-point-control-for-robotic-assisted-human-reaching-using-binocular-eye-tracking
#10
Roni O Maimon-Dror, Jorge Fernandez-Quesada, Giuseppe A Zito, Charalambos Konnaris, Sabine Dziemian, A Aldo Faisal
Eye-movements are the only directly observable behavioural signals that are highly correlated with actions at the task level, and proactive of body movements and thus reflect action intentions. Moreover, eye movements are preserved in many movement disorders leading to paralysis (or amputees) from stroke, spinal cord injury, Parkinson's disease, multiple sclerosis, and muscular dystrophy among others. Despite this benefit, eye tracking is not widely used as control interface for robotic interfaces in movement impaired patients due to poor human-robot interfaces...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813959/-wink-to-grasp-comparing-eye-voice-emg-gesture-control-of-grasp-with-soft-robotic-gloves
#11
Bernardo Noronha, Sabine Dziemian, Giuseppe A Zito, Charalambos Konnaris, A Aldo Faisal
The ability of robotic rehabilitation devices to support paralysed end-users is ultimately limited by the degree to which human-machine-interaction is designed to be effective and efficient in translating user intention into robotic action. Specifically, we evaluate the novel possibility of binocular eye-tracking technology to detect voluntary winks from involuntary blink commands, to establish winks as a novel low-latency control signal to trigger robotic action. By wearing binocular eye-tracking glasses we enable users to directly observe their environment or the actuator and trigger movement actions, without having to interact with a visual display unit or user interface...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813945/towards-a-situation-and-user-aware-multi-modal-motorized-toilet-system-to-assist-older-adults-with-disabilities-a-user-requirements-study
#12
T Pilissy, A Toth, G Fazekas, A Sobjak, R Rosenthal, T Luftenegger, P Panek, P Mayer
In the recent decades state of the art technologies appeared in many areas to assist older adults with disabilities. However, one very essential activity of daily life, the toileting remained without any relevant development. The iToilet project of the European Union focuses on the development of an intelligent and motorized toilet system to enable independent toilet use for older adults with disabilities. To begin the development, the user requirements of end-users were assessed by means of focus group interviews and questionnaires...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813933/robotic-learning-from-demonstration-of-therapist-s-time-varying-assistance-to-a-patient-in-trajectory-following-tasks
#13
Mohammad Najafi, Kim Adams, Mahdi Tavakoli
The number of people with physical disabilities and impaired motion control is increasing. Consequently, there is a growing demand for intelligent assistive robotic systems to cooperate with people with disability and help them carry out different tasks. To this end, our group has pioneered the use of robot learning from demonstration (RLfD) techniques, which eliminate the need for task-specific robot programming, in robotic rehabilitation and assistive technologies settings. First, in the demonstration phase, the therapist (or in general, a helper) provides an intervention (typically assistance) and cooperatively performs a task with a patient several times...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813929/soft-brain-machine-interfaces-for-assistive-robotics-a-novel-control-approach
#14
Lucia Schiatti, Jacopo Tessadori, Giacinto Barresi, Leonardo S Mattos, Arash Ajoudani
Robotic systems offer the possibility of improving the life quality of people with severe motor disabilities, enhancing the individual's degree of independence and interaction with the external environment. In this direction, the operator's residual functions must be exploited for the control of the robot movements and the underlying dynamic interaction through intuitive and effective human-robot interfaces. Towards this end, this work aims at exploring the potential of a novel Soft Brain-Machine Interface (BMI), suitable for dynamic execution of remote manipulation tasks for a wide range of patients...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813917/intuitive-adaptive-orientation-control-of-assistive-robots-for-people-living-with-upper-limb-disabilities
#15
Dinh-Son Vu, Ulysse Cote Allard, Clement Gosselin, Francois Routhier, Benoit Gosselin, Alexandre Campeau-Lecours
Robotic assistive devices enhance the autonomy of individuals living with physical disabilities in their day-to-day life. Although the first priority for such devices is safety, they must also be intuitive and efficient from an engineering point of view in order to be adopted by a broad range of users. This is especially true for assistive robotic arms, as they are used for the complex control tasks of daily living. One challenge in the control of such assistive robots is the management of the end-effector orientation which is not always intuitive for the human operator, especially for neophytes...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813911/design-and-kinematic-analysis-of-a-novel-upper-limb-exoskeleton-for-rehabilitation-of-stroke-patients
#16
Amin Zeiaee, Rana Soltani-Zarrin, Reza Langari, Reza Tafreshi
This paper details the design process and features of a novel upper limb rehabilitation exoskeleton named CLEVER (Compact, Low-weight, Ergonomic, Virtual/Augmented Reality Enhanced Rehabilitation) ARM. The research effort is focused on designing a lightweight and ergonomic upper-limb rehabilitation exoskeleton capable of producing diverse and perceptually rich training scenarios. To this end, the knowledge available in the literature of rehabilitation robotics is used along with formal conceptual design techniques...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813905/design-and-characterization-of-the-openwrist-a-robotic-wrist-exoskeleton-for-coordinated-hand-wrist-rehabilitation
#17
Evan Pezent, Chad G Rose, Ashish D Deshpande, Marcia K O'Malley
Robotic devices have been clinically verified for use in long duration and high intensity rehabilitation needed for motor recovery after neurological injury. Targeted and coordinated hand and wrist therapy, often overlooked in rehabilitation robotics, is required to regain the ability to perform activities of daily living. To this end, a new coupled hand-wrist exoskeleton has been designed. This paper details the design of the wrist module and several human-related considerations made to maximize its potential as a coordinated hand-wrist device...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813883/development-of-a-series-wrapping-cam-mechanism-for-energy-transfer-in-wearable-arm-support-applications
#18
Jeremiah S Schroeder, Joel C Perry
An estimated 17 million individuals suffer a stroke each year with over 5 million resulting in permanent disability. For many of these, the provision of gravity support to the impaired upper limb can provide significant and immediate improvement in arm mobility. This added mobility has the potential to improve arm function and user independence overall, but, so far, wearable arm supports have found only limited uptake by end-users. The reasons are unclear, but it is hypothesized that device uptake is strongly affected by aspects of arm support implementation such as added weight and volume and the effectiveness of the support provided...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813863/comparison-of-kinematic-and-emg-parameters-between-unassisted-fixed-and-adaptive-stiffness-robotic-assisted-ankle-movements-in-post-stroke-subjects
#19
Juan C Perez-Ibarra, Adriano A G Siqueira
In this paper, we present an assist-as-needed scheme that effectively adapted the assistance provided by an ankle rehabilitation robot according to patient's participation and performance during therapeutic movements. We performed an error-based estimation of the ankle impedance as a valid measure of the patient participation. Then, we computed the amount of robotic assistance by three steps: normalization of the combined patient-robot stiffness, optimization of patientrobot interaction, and finally, adaptation of the level of the robotic assistance according to patient's performance while playing a serious game...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
https://www.readbyqxmd.com/read/28813855/an-optimized-design-of-a-parallel-robot-for-gait-training
#20
Marco Maddalena, Mozafar Saadat, Alireza Rastegarpanah, Rui C V Loureiro
The guidelines for enhancing robot-assisted training for post-stroke survivors head towards increasing exercise realism and variability; in particular lower limb rehabilitation needs the patient to feel challenged to adapt his locomotion and dynamic balance capabilities to different virtual ground scenarios. This paper proposes a design for a robot whose end-effector acts as a footplate to be in permanent contact with the user's foot during practice: the structure is such that it enables the user's foot to rotate around three axis, differently from what is currently available in the research for gait training; the parallel kinematic structure and the dimensional synthesis allow a suitable range of motion and aim at limiting device mass, footprint and reaction forces on the actuators when rendering virtual ground...
July 2017: IEEE ... International Conference on Rehabilitation Robotics: [proceedings]
keyword
keyword
52651
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"