Read by QxMD icon Read


Lauren E Marshall, Roy Koomullil, Andra R Frost, Joel L Berry
A preclinical testing model for cancer therapeutics that replicates in vivo physiology is needed to accurately describe drug delivery and efficacy prior to clinical trials. To develop an in vitro model of breast cancer that mimics in vivo drug/nutrient delivery as well as physiological size and bio-composition, it is essential to describe the mass transport quantitatively. The objective of the present study was to develop in vitro and computational models to measure mass transport from a perfusion system into a 3D extracellular matrix (ECM)...
October 21, 2016: Annals of Biomedical Engineering
Lin Li, Kaixiong Yang, Jian Lin, Junxin Liu
An integrated-bioreactor, which consisted of a suspended zone and an immobilized zone, was applied to treat gases containing SO2. The removal of SO2 in suspended zone differed slightly from that in immobilized zone. The influences of operational aspects such as SO2 load, temperature, and pH on integrated-bioreactor performance and bacterial community composition were investigated. The synergistic action of the two zones led to effective reduction of SO2, and the total removal efficiencies with the inlet concentration of 91-117 mg/m(3), were over 85 % in steady state...
October 21, 2016: Bioprocess and Biosystems Engineering
Peter G Alexander, Karen L Clark, Rocky S Tuan
Limb congenital defects afflict approximately 0.6:1000 live births. In addition to genetic factors, prenatal exposure to drugs and environmental toxicants, represents a major contributing factor to limb defects. Examples of well-recognized limb teratogenic agents include thalidomide, warfarin, valproic acid, misoprostol, and phenytoin. While the mechanism by which these agents cause dymorphogenesis is increasingly clear, prediction of the limb teratogenicity of many thousands of as yet uncharacterized environmental factors (pollutants) remains inexact...
October 21, 2016: Birth Defects Research. Part C, Embryo Today: Reviews
Bradley P Weegman, Ahmad Essawy, Peter Nash, Alexandra L Carlson, Kristin J Voltzke, Zhaohui Geng, Marjan Jahani, Benjamin B Becker, Klearchos K Papas, Meri T Firpo
In this demonstration, spheroids formed from the β-TC6 insulinoma cell line were cultured as a model of manufacturing a mammalian islet cell product to demonstrate how regulating nutrient levels can improve cell yields. In previous studies, bioreactors facilitated increased culture volumes over static cultures, but no increase in cell yields were observed. Limitations in key nutrients such as glucose, which were consumed between batch feedings, can lead to limitations in cell expansion. Large fluctuations in glucose levels were observed, despite the increase in glucose concentrations in the media...
September 25, 2016: Journal of Visualized Experiments: JoVE
Christopher Chukwudi Okonkwo, Victor Ujor, Thaddeus Chukwuemeka Ezeji
Understanding the capacity of Paenibacillus polymyxa DSM 365 to tolerate increasing concentrations of 2,3-butanediol (2,3-BD) is critical to engineering a 2,3-BD-overproducing strain. Hence, we investigated the response of P. polymyxa to high 2,3-BD concentrations. In fed-batch cultures (6-L bioreactor) 2,3-BD was accumulated to a maximum concentration of 47g/L despite the presence of residual 13g/L glucose in the medium. Concomitantly, accumulation of acetoin, the precursor of 2,3-BD increased after maximum 2,3-BD concentration was reached, suggesting that 2,3-BD was reconverted to acetoin after the concentration tolerance threshold of 2,3-BD was exceeded...
October 17, 2016: New Biotechnology
Leihong Zhao, Lining Yang, Hongjun Lin, Meijia Zhang, Haiying Yu, Bao-Qiang Liao, Fangyuan Wang, Xiaoling Zhou, Renjie Li
While the adsorptive fouling in membrane bioreactors (MBRs) is highly dependent of the surface morphology, little progress has been made on modeling biocake layer surface morphology. In this study, a novel method, which combined static light scattering method for fractal dimension (Df) measurement with fractal method represented by the modified two-variable Weierstrass-Mandelbrot function, was proposed to model biocake layer surface in a MBR. Characterization by atomic force microscopy showed that the biocake surface was stochastic, disorder, self-similarity, and with non-integer dimension, illustrating obvious fractal features...
October 13, 2016: Bioresource Technology
Antoine Prandota Trzcinski, Lily Ganda, Chinagarn Kunacheva, Dong Qing Zhang, Li Leonard Lin, Guihe Tao, Yingjie Lee, Wun Jern Ng
In light of global warming mitigation efforts, increasing sludge disposal costs, and need for reduction in the carbon footprint of wastewater treatment plants, innovation in treatment technology has been tailored towards energy self-sufficiency. The AB process is a promising technology for achieving maximal energy recovery from wastewaters with minimum energy expenditure and therefore inherently reducing excess sludge production. Characterization of this novel sludge and its comparison with the more conventional B-stage sludge are necessary for a deeper understanding of AB treatment process design...
October 2016: Water Science and Technology: a Journal of the International Association on Water Pollution Research
Dilawar Farhan Shams, Alexandre Rubio, Panagiotis Elefsiniotis, Naresh Singhal
Nitrate concentration in the final effluent is a key issue in pre-denitrification biological treatment systems. This study investigated post-denitrification with alginate beads containing immobilized activated sludge microorganisms and organic carbon source. A batch study was first performed to identify suitable carbon sources among acetate, glucose, calcium tartrate, starch and canola oil on the basis of nitrate removal and bead stability. Canola oil and starch beads exhibited significantly higher denitrification rates, greater bead stability and lower nitrite accumulation (6 mg/L and 10 mg/L, respectively)...
October 2016: Water Science and Technology: a Journal of the International Association on Water Pollution Research
Linan Zhu, Hailing He, Chunli Wang
The hybrid membrane bioreactor (HMBR) has been applied in ship domestic sewage treatment under high volumetric loading for ship space saving. The mechanism and influence factors on the efficiency, including hydraulic retention time (HRT), dissolved oxygen (DO) of chemical oxygen demand (COD) removal were investigated. The HMBR's average COD removal rate was up to 95.13% on volumetric loading of 2.4 kgCOD/(m(3)•d) and the COD concentration in the effluent was 48.5 mg/L, far below the International Maritime Organization (IMO) discharge standard of 125 mg/L...
October 2016: Water Science and Technology: a Journal of the International Association on Water Pollution Research
Hamse Kjerstadius, Jo de Vrieze, Jes la Cour Jansen, Åsa Davidsson
High-volume, low-strength industrial wastewaters constitute a large potential for biogas production, which could be realized by membrane bioreactors operating at the ambient temperature of the wastewater. However, the start-up of low-temperature anaerobic processes using unadapted inoculum can be sensitive to overloading, which results in acidification. This study assessed if a novel acidification limit test can be used to identify stable organic loading rates as well as process over-loading. The test is based on easy-to-apply batch experiments for determination of the hydrolysis rate constant and the specific methanogenic activity of the acetotrophic and hydrogenotrophic pathways...
October 14, 2016: Water Research
Antonino Baez, Joseph Shiloach
The damaging effect of high oxygen concentration on growth of Escherichia coli is well established. Over-oxygenation increases the intracellular concentration of reactive oxygen species (ROS), causing the destruction of the [4Fe-4S] cluster of dehydratases and limiting the biosynthesis of both branched-chain amino acids and nicotinamide adenine dinucleotide. A key enzyme that reduces the damaging effect of superoxide is superoxide dismutase (SOD). Its transcriptional regulation is controlled by global transcription regulators that respond to changes in oxygen and iron concentrations and pH...
October 18, 2016: Antonie Van Leeuwenhoek
Prashant Praveen, Jonathan Yun Ping Heng, Kai-Chee Loh
Discharge of wastewater with high nitrogen and phosphorus content is a major cause of eutrophication. In this study, a microfiltration-based membrane photobioreactor (MPBR) and forward osmosis-based osmotic membrane photobioreactor (OMPBR) have been operated with Chlorella vulgaris for continuous tertiary wastewater treatment. Both the bioreactors exhibited good biomass accumulation (over 2g/L), although the OMPBR achieved better nutrients removal due to high rejection properties of the membranes. At 2days HRT, the OMPBR achieved nitrogen and phosphorus removal efficiencies of 86-99% and 100%, respectively, whereas the corresponding values in the MPBR were 48-97% and 46%, respectively...
October 1, 2016: Bioresource Technology
Cláudia C Miranda, Tiago G Fernandes, M Margarida Diogo, Joaquim M S Cabral
The demand of high cell numbers for applications in cellular therapies and drug screening requires the development of scalable platforms capable to generating highly pure populations of tissue-specific cells from human pluripotent stem cells. In this work, we describe the scaling-up of an aggregate-based culture system for neural induction of human induced pluripotent stem cells (hiPSCs) under chemically-defined conditions. A combination of non-enzymatic dissociation and rotary agitation was successfully used to produce homogeneous populations of hiPSC aggregates with an optimal (140 μm) and narrow distribution of diameters (coefficient of variation of 21...
October 18, 2016: Biotechnology Journal
Marco Piola, Matthijs Ruiter, Riccardo Vismara, Valeria Mastrullo, Marco Agrifoglio, Marco Zanobini, Maurizio Pesce, Monica Soncini, Gianfranco Beniamino Fiore
After coronary artery bypass grafting, structural modifications of the saphenous vein wall lead to lumen narrowing in response to the altered hemodynamic conditions. Here we present the design of a novel ex vivo culture system conceived for mimicking central coronary artery hemodynamics, and we report the results of biomechanical stimulation experiments using human saphenous vein samples. The novel pulsatile system used an aortic-like pressure for forcing a time-dependent coronary-like resistance to obtain the corresponding coronary-like flow rate...
October 17, 2016: Annals of Biomedical Engineering
Camila L Madeira, Samuel A Speet, Cristina A Nieto, Leif Abrell, Jon Chorover, Reyes Sierra-Alvarez, Jim A Field
Insensitive munitions, such as 3-nitro-1,2,4-triazol-5-one (NTO), are being considered by the U.S. Army as replacements for conventional explosives. Environmental emissions of NTO are expected to increase as its use becomes widespread; but only a few studies have considered the remediation of NTO-contaminated sites. In this study, sequential anaerobic-aerobic biodegradation of NTO was investigated in bioreactors using soil as inoculum. Batch bioassays confirmed microbial reduction of NTO under anaerobic conditions to 3-amino-1,2,4-triazol-5-one (ATO) using pyruvate as electron-donating cosubstrate...
October 14, 2016: Chemosphere
Tingting Wu, James D Englehardt
An urban net-zero water treatment system, designed for energy-positive water management, 100% recycle of comingled black/grey water to drinking water standards, and mineralization of hormones and other organics, without production of concentrate, was constructed and operated for two years, serving an occupied four-bedroom, four-bath university residence hall apartment. The system comprised septic tank, denitrifying membrane bioreactor (MBR), iron-mediated aeration (IMA) reactor, vacuum ultrafilter, and peroxone or UV/H2O2 advanced oxidation, with 14% rainwater make-up and concomitant discharge of 14% of treated water (ultimately for reuse in irrigation)...
October 5, 2016: Water Research
Akalabya Bissoyi, Arindam Bit, Bikesh Kumar Singh, Abhishek Kumar Singh, Pradeep Kumar Patra
Cell-matrix systems can be stored for longer period of time by means of cryopreservation. Cell-matrix and cell-cell interaction has been found to be critical in a number of basic biological processes. Tissue structure maintenance, cell secretary activity, cellular migration, and cell-cell communication all exist because of the presence of cell interactions. This complex and co-ordinated interaction between cellular constituents, extracellular matrix and adjacent cells has been identified as a significant contributor in the overall co-ordination of tissue...
October 17, 2016: Scientific Reports
Daniel Pelaez, Zenith Acosta Torres, Tsz Kin Ng, Kwong Wai Choy, Chi Pui Pang, Herman S Cheung
Cellular therapies for the treatment of myocardial infarction have proven to be an invaluable tool in recent years and provide encouraging evidence for the possibility to restore normal heart function. However, questions still remain as to the optimal cell source, pre-conditioning methods and delivery techniques for such an application. This study explores the use of a population of stem cells arising from the neural crest and isolated from adult human periodontal ligament along with short-term mechanical strain as an inducer of cardiomyogenesis and possibly pre-conditioning stimulus for cellular cardiomyoplasty...
October 17, 2016: Cell and Tissue Research
Jenny M Pedersen, Yoo-Sik Shim, Vaibhav Hans, Martin B Phillips, Jeffrey M Macdonald, Glenn Walker, Melvin E Andersen, Harvey J Clewell, Miyoung Yoon
Accurate prediction of metabolism is a significant outstanding challenge in toxicology. The best predictions are based on experimental data from in vitro systems using primary hepatocytes. The predictivity of the primary hepatocyte-based culture systems, however, is still limited due to well-known phenotypic instability and rapid decline of metabolic competence within a few hours. Dynamic flow bioreactors for three-dimensional cell cultures are thought to be better at recapitulating tissue microenvironments and show potential to improve in vivo extrapolations of chemical or drug toxicity based on in vitro test results...
2016: Frontiers in Bioengineering and Biotechnology
Jeong Wook Lee, Jongho Yi, Tae Yong Kim, Sol Choi, Jung Ho Ahn, Hyohak Song, Moon-Hee Lee, Sang Yup Lee
Succinic acid (SA) is a four carbon dicarboxylic acid of great industrial interest that can be produced by microbial fermentation. Here we report development of a high-yield homo-SA producing Mannheimia succiniciproducens strain by metabolic engineering. The PALFK strain (ldhA(-), pta(-), ackA(-), fruA(-)) was developed based on optimization of carbon flux towards SA production while minimizing byproducts formation through the integrated application of in silico genome-scale metabolic flux analysis, omics analyses, and reconstruction of central carbon metabolism...
October 13, 2016: Metabolic Engineering
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"