Read by QxMD icon Read

Thomas gregor drosophila

Hernan G Garcia, Thomas Gregor
mRNA synthesis is one of the earliest readouts of the activity of a transcribed gene, which is of particular interest in the context of metazoan cell fate specification. These processes are intrinsically dynamic and stochastic, which makes in vivo single-cell measurements inevitable. Here, we present the application of a technology that has been widely used in single celled organisms to measure transcriptional activity in developing embryos of the fruit fly Drosophila melanogaster. The method allows for quantification of instantaneous polymerase occupancy of active gene loci and thereby enables the development and testing of models of gene regulation in development...
2018: Methods in Molecular Biology
Shawn C Little, Thomas Gregor
Single molecule fluorescent in situ hybridization (smFISH) enables quantitative measurements of gene expression and mRNA localization. The technique is increasingly popular for analysis of cultured cells but is not widely applied to intact organisms. Here, we describe a method for labeling and detection of single mRNA molecules in whole embryos of the fruit fly Drosophila melanogaster. This method permits measurements of gene expression in absolute units, enabling new studies of transcriptional mechanisms underlying precision and reproducibility in cell specification...
2018: Methods in Molecular Biology
Jacques P Bothma, Hernan G Garcia, Samuel Ng, Michael W Perry, Thomas Gregor, Michael Levine
Metazoan genes are embedded in a rich milieu of regulatory information that often includes multiple enhancers possessing overlapping activities. In this study, we employ quantitative live imaging methods to assess the function of pairs of primary and shadow enhancers in the regulation of key patterning genes-knirps, hunchback, and snail-in developing Drosophila embryos. The knirps enhancers exhibit additive, sometimes even super-additive activities, consistent with classical gene fusion studies. In contrast, the hunchback enhancers function sub-additively in anterior regions containing saturating levels of the Bicoid activator, but function additively in regions where there are diminishing levels of the Bicoid gradient...
August 12, 2015: ELife
Gašper Tkačik, Julien O Dubuis, Mariela D Petkova, Thomas Gregor
The concept of positional information is central to our understanding of how cells determine their location in a multicellular structure and thereby their developmental fates. Nevertheless, positional information has neither been defined mathematically nor quantified in a principled way. Here we provide an information-theoretic definition in the context of developmental gene expression patterns and examine the features of expression patterns that affect positional information quantitatively. We connect positional information with the concept of positional error and develop tools to directly measure information and error from experimental data...
January 2015: Genetics
Thomas Gregor, Hernan G Garcia, Shawn C Little
Transcriptional regulation of gene expression is fundamental to most cellular processes, including determination of cellular fates. Quantitative studies of transcription in cultured cells have led to significant advances in identifying mechanisms underlying transcriptional control. Recent progress allowed implementation of these same quantitative methods in multicellular organisms to ask how transcriptional regulation unfolds both in vivo and at the single molecule level in the context of embryonic development...
August 2014: Trends in Genetics: TIG
Jacques P Bothma, Hernan G Garcia, Emilia Esposito, Gavin Schlissel, Thomas Gregor, Michael Levine
We present the use of recently developed live imaging methods to examine the dynamic regulation of even-skipped (eve) stripe 2 expression in the precellular Drosophila embryo. Nascent transcripts were visualized via MS2 RNA stem loops. The eve stripe 2 transgene exhibits a highly dynamic pattern of de novo transcription, beginning with a broad domain of expression during nuclear cycle 12 (nc12), and progressive refinement during nc13 and nc14. The mature stripe 2 pattern is surprisingly transient, constituting just ∼15 min of the ∼90-min period of expression...
July 22, 2014: Proceedings of the National Academy of Sciences of the United States of America
Laurent Abouchar, Mariela D Petkova, Cynthia R Steinhardt, Thomas Gregor
Developmental processes in multicellular organisms occur in fluctuating environments and are prone to noise, yet they produce complex patterns with astonishing reproducibility. We measure the left-right and inter-individual precision of bilaterally symmetric fly wings across the natural range of genetic and environmental conditions and find that wing vein patterns are specified with identical spatial precision and are reproducible to within a single-cell width. The early fly embryo operates at a similar degree of reproducibility, suggesting that the overall spatial precision of morphogenesis in Drosophila performs at the single-cell level...
August 6, 2014: Journal of the Royal Society, Interface
Mariela D Petkova, Shawn C Little, Feng Liu, Thomas Gregor
Cell fate decisions during multicellular development are precisely coordinated, leading to highly reproducible macroscopic structural outcomes [1-3]. The origins of this reproducibility are found at the molecular level during the earliest stages of development when patterns of morphogen molecules emerge reproducibly [4, 5]. However, although the initial conditions for these early stages are determined by the female during oogenesis, it is unknown whether reproducibility is perpetuated from oogenesis or reacquired by the zygote...
June 2, 2014: Current Biology: CB
Hernan G Garcia, Mikhail Tikhonov, Albert Lin, Thomas Gregor
Spatiotemporal patterns of gene expression are fundamental to every developmental program. The resulting macroscopic domains have been mainly characterized by their levels of gene products. However, the establishment of such patterns results from differences in the dynamics of microscopic events in individual cells such as transcription. It is unclear how these microscopic decisions lead to macroscopic patterns, as measurements in fixed tissue cannot access the underlying transcriptional dynamics. In vivo transcriptional dynamics have long been approached in single-celled organisms, but never in a multicellular developmental context...
November 4, 2013: Current Biology: CB
Shawn C Little, Mikhail Tikhonov, Thomas Gregor
Early embryonic patterning events are strikingly precise, a fact that appears incompatible with the stochastic gene expression observed across phyla. Using single-molecule mRNA quantification in Drosophila embryos, we determine the magnitude of fluctuations in the expression of four critical patterning genes. The accumulation of mRNAs is identical across genes and fluctuates by only ∼8% between neighboring nuclei, generating precise protein distributions. In contrast, transcribing loci exhibit an intrinsic noise of ∼45% independent of specific promoter-enhancer architecture or fluctuating inputs...
August 15, 2013: Cell
Feng Liu, Alexander H Morrison, Thomas Gregor
Patterning of body parts in multicellular organisms relies on the interpretation of transcription factor (TF) concentrations by genetic networks. To determine the extent by which absolute TF concentration dictates gene expression and morphogenesis programs that ultimately lead to patterns in Drosophila embryos, we manipulate maternally supplied patterning determinants and measure readout concentration at the position of various developmental markers. When we increase the overall amount of the maternal TF Bicoid (Bcd) fivefold, Bcd concentrations in cells at positions of the cephalic furrow, an early morphological marker, differ by a factor of 2...
April 23, 2013: Proceedings of the National Academy of Sciences of the United States of America
Julien O Dubuis, Reba Samanta, Thomas Gregor
Quantification of gene expression has become a central tool for understanding genetic networks. In many systems, the only viable way to measure protein levels is by immunofluorescence, which is notorious for its limited accuracy. Using the early Drosophila embryo as an example, we show that careful identification and control of experimental error allows for highly accurate gene expression measurements. We generated antibodies in different host species, allowing for simultaneous staining of four Drosophila gap genes in individual embryos...
2013: Molecular Systems Biology
Alexander H Morrison, Martin Scheeler, Julien Dubuis, Thomas Gregor
In multicellular organisms, patterns of gene expression are established in response to gradients of signaling molecules. During fly development in early Drosophila embryos, the Bicoid (Bcd) morphogen gradient is established within the first hour after fertilization. Bcd acts as a transcription factor, initiating the expression of a cascade of genes that determine the segmentation pattern of the embryo, which serves as a blueprint for the future adult organism. A robust understanding of the mechanisms that govern this segmentation cascade is still lacking, and a new generation of quantitative measurements of the spatiotemporal concentration dynamics of the individual players in this cascade is necessary for further progress...
April 2012: Cold Spring Harbor Protocols
Shawn C Little, Gašper Tkačik, Thomas B Kneeland, Eric F Wieschaus, Thomas Gregor
The Bicoid morphogen gradient directs the patterning of cell fates along the anterior-posterior axis of the syncytial Drosophila embryo and serves as a paradigm of morphogen-mediated patterning. The simplest models of gradient formation rely on constant protein synthesis and diffusion from anteriorly localized source mRNA, coupled with uniform protein degradation. However, currently such models cannot account for all known gradient characteristics. Recent work has proposed that bicoid mRNA spatial distribution is sufficient to produce the observed protein gradient, minimizing the role of protein transport...
March 2011: PLoS Biology
Gasper Tkacik, Thomas Gregor, William Bialek
Gene expression levels fluctuate even under constant external conditions. Much emphasis has usually been placed on the components of this noise that are due to randomness in transcription and translation. Here we focus on the role of noise associated with the inputs to transcriptional regulation; in particular, we analyze the effects of random arrival times and binding of transcription factors to their target sites along the genome. This contribution to the total noise sets a fundamental physical limit to the reliability of genetic control, and has clear signatures, but we show that these are easily obscured by experimental limitations and even by conventional methods for plotting the variance vs...
July 23, 2008: PloS One
Thomas Gregor, Alistair P McGregor, Eric F Wieschaus
The Bicoid morphogen evolved approximately 150 MYA from a Hox3 duplication and is only found in higher dipterans. A major difference between dipteran species, however, is the size of the embryo, which varies up to 5-fold. Although the expression of developmental factors scale with egg length, it remains unknown how this scaling is achieved. To test whether scaling is accounted for by the properties of Bicoid, we expressed eGFP fused to the coding region of bicoid from three dipteran species in transgenic Drosophila embryos using the Drosophila bicoid cis-regulatory and mRNA localization sequences...
April 15, 2008: Developmental Biology
Thomas Gregor, David W Tank, Eric F Wieschaus, William Bialek
The reproducibility and precision of biological patterning is limited by the accuracy with which concentration profiles of morphogen molecules can be established and read out by their targets. We consider four measures of precision for the Bicoid morphogen in the Drosophila embryo: the concentration differences that distinguish neighboring cells, the limits set by the random arrival of Bicoid molecules at their targets (which depends on absolute concentration), the noise in readout of Bicoid by the activation of Hunchback, and the reproducibility of Bicoid concentration at corresponding positions in multiple embryos...
July 13, 2007: Cell
Thomas Gregor, Eric F Wieschaus, Alistair P McGregor, William Bialek, David W Tank
Patterning in multicellular organisms results from spatial gradients in morphogen concentration, but the dynamics of these gradients remain largely unexplored. We characterize, through in vivo optical imaging, the development and stability of the Bicoid morphogen gradient in Drosophila embryos that express a Bicoid-eGFP fusion protein. The gradient is established rapidly (approximately 1 hr after fertilization), with nuclear Bicoid concentration rising and falling during mitosis. Interphase levels result from a rapid equilibrium between Bicoid uptake and removal...
July 13, 2007: Cell
Thomas Gregor, William Bialek, Rob R de Ruyter van Steveninck, David W Tank, Eric F Wieschaus
Development of spatial patterns in multicellular organisms depends on gradients in the concentration of signaling molecules that control gene expression. In the Drosophila embryo, Bicoid (Bcd) morphogen controls cell fate along 70% of the anteroposterior axis but is translated from mRNA localized at the anterior pole. Gradients of Bcd and other morphogens are thought to arise through diffusion, but this basic assumption has never been rigorously tested in living embryos. Furthermore, because diffusion sets a relationship between length and time scales, it is hard to see how patterns of gene expression established by diffusion would scale proportionately as egg size changes during evolution...
December 20, 2005: Proceedings of the National Academy of Sciences of the United States of America
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"